
SOFTWARE FOR MONITORING INTRANET NETWORK

POPESCU MARIUS CONSTANTIN 1, DRIG FLORENTIN-GEORGE 2, NAAJI ANTOANELA 3
1,3“Vasile Goldis” Western University of Arad, Faculty of Economics, Computer Science and

Engineering, Arad, Romania
2Atos It Solutions and Services, Timisoara, Romania

mpopescu@uvvg.ro, florentin.drig@outlook.com, anaaji@uvvg.ro3, etc

Abstract:
Nowadays, connectivity is an imperative factor within Intranet networks, especially
in terms of speed, functionality, user-friendliness and time of intervention. The
software application presented in this paper can be used to monitor network port(s),
for one or several computers connected to the network, so that one could see, from a
web administration page, which of the configured computers is in the network and
which is not. This application can be an important tool for a small or medium
business company because it simplifies the monitoring of the entire intranet network.
The most important advantages are: high speed of updating the information, it does
not slow the network by making useless traffic, it has a full reporting system and it is
simple to use.

Keywords: network monitoring; user-friendly interface; connectivity; efficiency;
flexibility

JEL classification: Y8.

1. Introduction

In this era when information and access to it are very important, connectivity is
an imperative factor. Connectivity between computers provides the possibility for
information to flow at very high speeds, and monitoring the computers’ network port is
the first step. This application was thought out strictly for local networks, not for a
global level where monitoring is easily made using specialized network equipment [5,
7]. Such an application is beneficial to any professional or company, if there are several
computers in the managed network. Since in a company or plant running several
computers to manage the production area it is imperative for these computers to be
functional and connected to the network at all times, such an application is beneficial, as
it can provide the shortest interruption of connectivity possible, and thus keep financial
losses at a low level [2,11]. The application we developed can be very helpful for
intranet network administrators, being equipped with a simple interface that is user - and
administrator-friendly. As novelties brought by the application we can list user-
friendliness and the way computers are monitored in a network. Since the whole of
administration is easy to manage, the application can be used in a home network by
individuals with only basic knowledge of IT. The application functions differently from
similar commercial solutions found on the market. The system described is simple, with
a set of features similar to the long-market systems or open source solutions (eg Nagios,
Zabbix, Sensu) [1,4,8].

2. Software adjacent to the application

This paragraph describes the software that needs to be installed and set up before
running the monitoring application. From address [13] one can download SQL Server
2016 Express Edition, and the SQL Server Management Studio R17 kit can be
downloaded from address [14]. To configure the database to store data in the

106

mailto:mpopescu@uvvg.ro
mailto:florentin.drig@outlook.com
mailto:anaaji@uvvg.ro3

application, we will run SQL Server Management Studio. The credentials are the ones
set up during installation.

Once connected, it can be seen that there no defined or newly created databases,
outside of those used by SQL Server [6, 10]. For a faster configuration the database and
the file associated to the work can be restored (on clicking databases and restore
database), a window will appear where we will have to choose the file attached to the
work, titled stationsMonitor.bak. The file will be selected (click on device and the
button […], and the file stationsMonitor.bak will be picked from the location in which it
was copied (click on add and Ok) (Fig.1).

O Database:

® Device:

Database:

Destination

Database:

Restore to:

Restore plan

[E:\MicrosoftSQLServef\HSSQL13SQLEXPRESS\HSSQL\BackLjp\5tatonsMonto

Stations Monitor

The last backup taken (Sunday. June 25,201? 7:35:25 PH)

Backup sets to restore:

Restore Name Component Type Server Database
0 | Stations Monitor-Full Database Backup Database Full DESKTOP-2M729FTVSQLEXPRESS StationsMor

Fig.1. Window to choose a database

The steps are listed in detail, so as to make sure the application will run as
expected and rule out any errors. To run the application it is necessary to fulfill certain
requirements, such as a Windows 7/8.1/10 operating system, SQL Server 2014/2016,
SQL Server Management Studio (included automatically for SQL Server 2014 versions
or older, but not for the 2016 version), .NET Framework 4.6, .NET Core 1.1.

Once the database is restored, a confirmation message will be displayed on the
monitor. When the database is restored, it can be used by the application (Fig.2). To use
the database, the application must be configured (Fig.3). Thus, the folder Aplicatie
monitorizare, associated with the paper, the file StationsMonitor.MonitorApp.exe is
edited as follows: data source (the database address must be completed), initial Catalog
(name of the previously restored database), user ID (database user) and password (the
user’s password).

O b j e c t t- -T- '"' C o n n e c t - T X T C- -*-
I-I fig D E S K T O P - 2 M 7 2 9 F T \ S Q L E X P R E S S (S Q L S e r v s;r 13.0 . -4001 - s a)

B

+
+

S y s t e m D a t a b a s e s
D a t a b a s e S n a p s h o t s

fig S t a t i o n s M o n i t o r
+ S e c u r i t y
+ S e r v e r O b j e c t s

- R e p l i c a t i o n
+ P o l y B a s e

Fig.2. The solution of the server to which we are connected, after restoring the database

File Edit Format View Help

<?xml version="1.0" encoding="utf-8" ?>

configuration*

<configSections>

</configSections>

<connectionString5>

odd name="StationsMonitor.MonitonApp.Properties.Settings.Defaulttonnection"

connectionString="^3

providerName="System.Data.SqlClient" />

</connection5trings>

<startup>

<supportedRuntime version="v4.0" sku="JETFramework,Version=v4.5" />

</startup>

</configuration>

Fig.3. Server address and connection to the database

107

file://E:/MicrosoftSQLServef/HSSQL13SQLEXPRESS/HSSQL/BackLjp/5tatonsMonto

In the folder Interfata web, associated with the work, the file appsettings.json
(Fig.4) is edited, with the data filled out above.

Fig.4. Server address and connection to the database

3. Application description

This paragraph presents each section in the functionality of the application. For
better understanding of the functioning of each code sequence, sections from the source
code are shown. Each algorithm is presented separately, from starting up the monitoring
application and the description of functions, to the description of functions used to test
connection with target computers. At the end of the paragraph we describe global
parameters utilized, as well as the location where they could be downloaded from the
Internet. The application is based on an algorithm created in C# which checks the list of
computers added using pings, thus obtaining information on that computer, such as its
availability in the network. Implementing technologies such as ASP.NET MVC, C# and
Javascript are used. C# was used for the logical part of the application, to generate the
algorithm, and ASP.NET Razor Views and Javascript were used for the interface part.

A. Available Menus
A summary of the information stored up until that moment can be viewed in the

control panel (Fig.5). The function that returns the entire information is found in the
dashboard controller.

Minutri from the but m m

Fig.5. Summary page with information collected by the application

Steps covered by the algorithm are (Fig.6):
- storing the current date in the currentDate variable;
- extracting the list of computers, operating systems and stored activities from

the database;
- the count() function was used to count computers and operating systems, which

returns an integer of type int; as the count() function issues an error when the list of
elements we wish to count is not initialized, the lists were checked using the any()
function, which returns the logical value true or false;

- going through the list of stored activities, adding each element into a new list
and displaying it using RazorView pages.

108

Fig.6. Algorithm for the Summary page

B. Computers
The menu provides information on the complete list of added computers (Fig.7),

which of them are monitored at the current moment, with the possibility of adding,
removing or editing a computer.

Fig.7. List of computers added for monitoring

Information listed on the page includes: computer name, operating system, IP
address through which the activity is monitored, the computer’s location, and the status,
which concerns current monitoring. The menu of actions present next to each computer
hides a set of activities for: editing, removing, starting/stopping monitoring, or viewing
the history.

C. Adding a Computer
To add a new computer the blue button “+ New computer” is clicked, which

redirects the user to the page where the computer is added, where after filling out the
required data the Add button is clicked. If data were not filled out correctly, an error
message will be returned to the user. The test sequence if (!ModelState.IsValid) tests if
all fields have been filled out correctly (Fig.8). If one of the fields is omitted we will be
automatically redirected to the same add computer page and a corresponding error
message.

109

Fig.8. Algorithm corresponding to the interface of the form for adding a computer

After going through this step, we check if the name of the computer and its IP
address are unique. If not, we will be redirected to the add computer page and a
corresponding error message will be displayed. If all data were validated, a new object
of the type computer shall be requested, which will be added to the database.

D. Editing a Computer
To edit information for a computer we click on the Actions button, found next to

each one of them, then on Edit. The edit computer page is automatically filled out with
information about it and then we will be able to make any necessary changes. After
changing the data, the same validation process is followed as in the case of the adding
part. If the name of the computer and its IP address are not unique, then a corresponding
error message will be displayed.

E. Removing a Computer
Once redirected to the remove page, it will be filled out automatically with

information on that computer. To remove a computer and all information associated to
it, the Actions button is clicked, then the Remove button.

F. Operating Systems
The menu illustrated in Fig. 9 shows the current list of operating systems and

can add, editor remove an operating system.

Fig.9. List of added operating systems

To add a new operating system the blue button“+ New operating system” is
clicked, which redirects us to the page where an operating system is added. The name of
the operating system is filled out, and if omitted, a corresponding error message will be
displayed. If no errors were returned after adding the new system, it will show up in the
list of operating systems. The same steps are taken to edit or remove an operating

110

system, and if in any of the required actions the data is not filled out properly, the
system will alert the user through an error message.

G. Monitor
To follow and monitor the network efficiently, when encountering the

first problem, the status of the computers will be changed, which is seen on the page in
Fig.10.

Fig.10. Monitor with the status resulting from the monitoring

The two statuses encountered are shown by two colors: red to highlight a
problem and green if no problem was found on that computer. Javascript was used to
display the computers dynamically on the monitor. The steps followed by the algorithm
are (Fig.11):

- upon loading the full page a timer function will be called, setInerval, which in
its turn call the initMonitor function, on a 6-second interval, which changes the status of
computers on the page.

- the initMonitor function uses the Ajax principle (information may be requested
about computers without having to reload the page), which means asynchronous
javascript and xml.

- within the initMonitor function a repetition with a known number of steps is
triggered, which goes through the list of computers.

m_MonitorContainer'

J(document),ready(function () {
initMonitorQ;

function init.'-'.onito"f 1 [

u r l : "/Monitor/GetData",
type: 'GET',
datatype: ' j i on ' ,
success: function (resul

war elAppend = " ;

J.eachfresult, fund i (index, item) {

<diu class="col-md-2" style="margin-bottom: 25px;">';
-■ (1L V i . ly l r=" l ! , i ik ; l - ; ; l l l ld- i ; ; l ; ; - : ' + i teir , BaCkgrOUndColor

<br / > ' ;
5r" style." el +■ '<h4 class^

e l i - '<br / > ' ;
el +■ '<p cliss*'
el+= '<br / > ' ;

c l +

:tyle="t

; color: ' + item.Fontcolor + '; ■

:-ouerflow:ellipsis; width: 140px; margin: 0 auto; white-

overflow:ellipsis; width: 140px; margin: 0 into; white-s

: nowrap; overflow: hidden;"*' +■ item.Name + '</h4>'j

nowrap; overflow: hidden;"*' + item.IPAddress + '</p>'

.emptyO
■append(elAppend);

ror; function (xhr, status, errorThrown) {
//Here the status code can be retrieved l ike;
console.error(xhr.status);

//The message added to Response object in Controller can be retrieved as following,
console.error(xhr.responseText);

war elAppend - '<br / x b r / x b r / > ' ;
elAppend +* '<hl class="text-center"xi class="fa fa-exclamation-triangle text-danger
elAppend +- '<h3 class="text-center text-muted">Daca problema nu dispare automat in S

J(config.container)
.empty()
.append(elAppend);

Fig. 11. Program for monitor interface

111

H. Settings
The settings page allows the user to change certain properties of the application,

such as: the number of pings sent (to check the status of the computer), the time –
expressed in seconds–when the pings will be sent, the number of pings which will be
sent to validate the connection (if the first ping does not return anything), the colors
corresponding to the two statuses, and whether or not a virtual computer can be added
for simulation.

I. Javascript Libraries Used
The application used libraries to add the possibility to sort, search or choose the

number of elements displayed in the tables, to validate the correct introduction of the IP
address, as well as to make it possible to choose colors for the monitor [3,9,12].

4. Algorithm to monitor the network

A. Starting the Monitoring Application
The application is created using .NET WPF for better compatibility with

Microsoft Windows operating system. For this system the WPF is the high end of
application development. When starting the application, the algorithm is initialized and
goes through the steps successively: an object of the type
System.Windows.Threading.DispatcherTime is created, which is configured with a time
interval expressed in seconds. The time interval is set in the “Application settings”
module, found in the web interface (Fig.12);

Fig.12. Full initialization function for the main window

- the object created is assigned a special function of the type
eventHandler(nume_functie) by which –on exhausting the xset seconds –the function is
called automatically;

- the timer and monitoring are started on calling the function start();
- the variable pingSettings.pingPeriod contains an int value taken from the

database using a sql query.

B. The EventHandler (dispattcherTimer_Tick) Function
For this module the dispatcherTimer_Tick function (Fig.13) has the purpose of

taking the list of computers and checking their availability in the network.
Implementing the algorithm entails successively going through the following

steps:

112

Fig.13. Function called automatically on the expiry of seconds in the timer

- initializing the objects that will return or save information about network
activity (Fig.14), using the functions new data. ComputerRepository() and new
data.NetworkActivityRepository().

- taking the entire list of computers from the database and configuring it for
active monitoring, using the function

Fig.14. Initialization of objects for working with the database

ComputerRepository.GetComputers() .Foreach was chosen to go through the list
of computers, which entails a repetition algorithm with a known number of steps. Since
the list of computers is initialized and their number is known, for better performance
foreach is chosen over the for algorithm, which entails going through and counting the
elements in the list.

- we go through the list of computers, computer by computer, and test their
availability in the network (Fig.15).

- the normal test entails sending only one ping and checking the number of
errors returned. The ping is sent by calling the pingHost(string IPAddress) function,
which expects the IP address of a computer as parameter.

- if the number of errors returned equals zero, we check if that computer already
has IsPingFailed.

- if the property is active, it should be deactivated, as the computer has answered
promptly after the test, and no problems are found. If the number of errors returned by
the function is different from zero, the IsPingFailed property is activated on that
computer, which will allow us to see the changed status on the monitor, in the web
interface. At the same time, the activity of the algorithm up to this moment is saved.
This activity is saved into the database by calling the function networkRepository.Insert
(new networkActivity{}) which expects a set of parameters, namely: computerId (it is
the unique identifier of each computer, which is assigned to the computer automatically
upon being added into the database), computerIPAddress (it is the IP address of the
computer, set by the administrator), computerName (it is a name given to computer for
better identification), Date (it is the current date when the first test is conducted),
networkTestMode (this attribute can be “Normal” or “Advanced” depending on the test
conducted–in this case the property is set to Normal), responseDetails (this property
allows a more detailed saving of the response received following the test).

113

Fig.15. Algorithm to test the connection of the computer to the network

- the next step is to try a more advanced test by sending several pings to the IP
address of that computer. This test is initialized by calling the function
pingHostAdvanced (string IPAddress) which in turn expects a string parameter,
representing the IP address of the tested computer.

- following the advanced test, the number of errors returned is checked.
- if it is different from zero, the current information on the test is stored in the

database by calling the networkActivity.Insert(new NetworkActivity{}) function, which
expects the same type of parameters, but with a different value for networkTestMode.
Being in the advanced test, this property will take the “Advanced” value.

- after completing the check for the first computer, we will move to the next one
on the list, until we have zero computers remaining in the list.

C. Testing Connection using the PingHost(string IPAddress) Function
To test the connection the pingHost function is called, which sends a single ping

to the IP address given as parameter. The steps of the algorithm will be (Fig.16):
- the variables countError and countOK are initialized to count the statuses

returned following the test, these being ok, or an error;
- an object of type ping is initialized, for the purpose of sending the ping;
- in the web interface we can configure how many times this ping is send and

checked; this number is given by the variable pingSettings.NormalPingNo;
- knowing the number of necessary iterations, an algorithm with a known

number of steps was chosen;
- using the for syntax, the is ping is sent and we check if it returned a success

status, or not; depending on this status, one of the variables above is incremented;
- to prevent any errors that might occur, this check was embedded into a

try...catch structure;
- in the end the number of errors found is returned.

114

Fig.16. The pingHost function for testing the connection in normal mode

D. Testing the Connection using the PingHostAdvanced (string IPAddress)
Function

From a structural and algorithmic point of view, the function resembles the
previous one, the difference being made by the number of iterations (Fig.17), which is
configured by the administrator in the web interface.

The steps of the developed algorithm are:
- the countError and countOK variables are initialized, which memorize the

number of pings sent successfully;
- the entire process of sending pings is embedded in a try...catch block to prevent

errors that might occur;
- in the end, the number of pings that did not return ok status following the test

is returned.

Fig.17. The PingHost function for testing the connection in advanced mode

E. Global Parameters
Two global parameters were used in developing the application,

system.Threading.DispatcherTimer, and pingSettings (Fig.18).

Fig.18. Defining global parameters and initializing the application interface

The mainWindow() function is called automatically by the application the
moment when the application interface is initialized, the interface being initialized on
calling the function initializeComponent().

115

F. The Arhitecture of ConnectingComputers to the Network
The application was tested in a closed network created with a wireless router

(Fig.19). Equipment in the infrastructure on which the tests were conducted includes:
laptop 1 (on which the application created and all required software were installed and
which was connected by wireless network), laptop 2 (client computer which is
monitored by the application and connected by wireless network), personal computer 1
(it is a client monitored by the application, and connection is wired), personal computer
2 (it is a client monitored by the application and is connected to the network by wire),
wireless router. This application was tested in this closed environment, and the
following step would be to test it in a production environment, with a complex topology
like ring or star, Layer 2 and 3, network equipment, several VLANs communicating
among themselves etc.

Fig.19.Connecting client computers to the architecture

5. Conclusions
The main advantages of the application lie in the simplicity of use (a minimum

of knowledge required to be used), user-friendly interface, high efficiency, fast response
times, updating the information in less than 5 seconds. The innovation and
performances listed previously raise the value of the application over similar solutions
proposed by the IT market. The application requires a few improvements that can be
brought to increase the efficiency in a production and utilization environment, such as:
automatically detecting all computers that are in the internal network, not using SQL
Server 2016 (replacing it with an open source version and reconfiguring the application
to use the new database - cost saving), and automating the entire process of configuring
the application. This network monitoring application makes it possible to add and
remove computers, and as such the monitoring function can be deactivated without
removing the computer from the list. The software provides a simple, clean and user-
friendly image of all work stations being monitored. At the same time, one can view a
simple statistic of the number of computers in the list, how many of them are monitored,
or the number of total errors intervening on a particular day. An operating system can be
set for each computer, to have a complete image, as well as their activity, as a list, for
the latest day. Such an application can be really useful to the IT staff of any company.

References

1. Bicaku, A., Balaban, S., Tauber, M.G., Hudic, A., Mauthe, A., Hutchison, D.
(2016). Harmonized Monitoring for High Assurance Clouds. IC2EW, IEEE. Pp.118
123.

2. Drig, Florentin, Popescu, Marius. (2017). Network monitoring. Dissertation
paper (in Romanian), Arad, unpublishes.

3. Gajda, V. (2010). JQuery. Poradnik programisty. Heloin, Kosciuszki.

116

4. Gutierrez-Aguado, J., Alcaraz Calero, J.M., Villanueva, W.D. (2016).
IaaSMon: Monitoring Architecture for Public Cloud Computing Data Centers. J. Grid
Computing 14. Pp.283–297.

5. Hong, J.W.K., Kwon, S.S., Kim, J.Y. (1999). WebTrafMon: Web-based
Internet/Intranet network traffic monitoring and analysis system. Computer
Communications 22. Pp.1333–1342.

6. Hotek, M. (2009). Microsoft SQL Server 2008. Computer Press.
7. Kim, H., Feamster, N. (2013). Improving Network Management with

Software Defined Networking. Software Defined Networks, IEEE Communications
Magazine. Pp.114-119.

8. Neto, A.F., Uchoa, J.Q. (2006). Ferramentas Livres para Monitoracao de
Servidores. people.softwarelivre.org. Pp.149-154.

9. Rotmianto, M., Wahyudi, E. (2016). Developing Plugin e-DDC as an
Additional Application for Senayan Library Management System with PHP Language
Programming and MySQL Database. Record and Library Journal, Vol 2, No 1.

10. Russo, M., Ferrari, A., Webb, C. (2012). Microsoft SQL Server 2012
Analysis Services: The BISM Tabular Model.

11. Spatariu, Edmund Julien, Popescu, Marius Constantin, Naaji, Antoanela.
(2015). Intelligent System with Remote Transmission for Monitoring
Telecommunication Equipment Parameters. Proceedings of the IEEE 21st International
Symposium for Design and Technology in Electronic Packiging, Braşov, Romania.
Pp.329-334.

12. Vorobev, A.V., Shakirova, G.R. (2015). Web-Based Information System for
Modeling and Analysis of Parameters of Geomagnetic Field. Procedia Computer
Science, Vol. 59. Pp.73-82.

13. *** Microsoft SQL Server 2017, https://www.microsoft.com/en-us/sql-
server/sql-server-downloads, accessed June 2018.

14. *** Microsoft SQL Management Studio, https://docs.microsoft.com/en-
us/sql/ssms/download-sql-server-management-studio-ssms, accessed June 2019.

117

https://www.microsoft.com/en-us/sqlserver/sql-server-downloads
https://www.microsoft.com/en-us/sqlserver/sql-server-downloads
https://docs.microsoft.com/enus/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/enus/sql/ssms/download-sql-server-management-studio-ssms

