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Abstract: 
An alternative approach to stochastic calculus for a financial model on some 
imperfect and unstable financial markets is proposed. Following the most recent 
instrument for the financial modeling, we study the solvability of a class of forward-
backward stochastic differential equations (FBSDE) in the framework of McShane 
stochastic calculus, in some general hypothesis on the initial value and the 
coefficient functions.
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Introduction 

Finance is one of the fastest developing areas in the modern banking and 
corporate word. This, together with the sophistication of modern financial products, 
provides a rapidly growing impetus for new mathematical models and modern 
mathematical methods. 

When an evolution of a financial asset is affected by exterior disturbances, its 
time-development can often be described by a system of ordinary differential equations, 
provided that the disturbances are smooth functions. But, for round reasons financial 
analysts want to apply the theory when the noises belong to a larger class, including for 
example white noise. A unified theory was give by E.J.McShane ([18],[19]) who 
introduced so called belated integrals and stochastic differential systems which enjoying 
the following three properties: inclusiveness, consistency and stability. McShane's 
calculus had proved to very valuable in modeling and it finding applications in physics, 
engineering and economics.  

In the last years, more sophisticated models are available on some restrictive 
financial hypothesis, but this hypothesis are not satisfied on some transition financial 
markets as in East Europe, where are more unpublished information, over quoted initial 
values and government financial interventions. Moreover, the evolution on these 
markets is characterized by some "smoothed" life-time and some very "noises" life-time 
and this time periods are hard unexpected. For these reasons, we propose an approach 
somehow, more general as there for a free financial market. 

The classic stochastic approach for the financial models has used the framework 
developed by Ito to deal with the resulting stochastic differential equations (SDE), 
based on the idea that a Wiener stochastic process is used for the external disturbances. 
Then, more authors supposed an semimartingale process for the external noises which 
make very complicated stochastic calculus. On the other side, E.J.McShane developed a 
more simple integration calculus using the Ito-belated integrals. In 1979, Ph.Protter 
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showed that the McShane calculus is equivalent with the integration with respect to a 
semimartingale process. Somehow, this situation is similar with the fact that a Riemann-
Stieltjes integral can be considered as a Lebesque integral in some adequate framework, 
but practically we prefer to use the Riemann integration calculus as to be moresimple. 
In [..] was given, in details, mathematical properties for this frame and we can sustain 
that the McShane's Calculus had proved to be very valuable in modeling and in finding 
application in finances under canonical form. 

Preliminaries 

In first year of 70's, E.J.McShane introduced so called belated integrals and 
stochastic differentials and differential systems which enjoying the following three 
properties: inclusiveness, consistency and stability. McShane's calculus had proved to 
very valuable in modeling and is finding applications in physics, engineering and 
economics. 

A stochastic integral equations by McShane type is one of the following form: 
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where the integrals are belated or McShane integrals. 
On the above equation, we recall some specifically results of the McShane 

stochastic calculus. Let ( , , )F PΩ  be a complete probability space and let { , 0 }tF t a≤ ≤
be a family of complete σ − subalgebras of F  such that 0 s t a≤ ≤ ≤  then s tF F⊆ .
Every process denoted by z  with diferent affixes will be a real valued second order 
stochastic process adapted to { , 0 }tF t a≤ ≤  (i.e. ( )z t  is tF − measurable for every 

[0, ]t a∈ ) and  
| [( ( ) ( )) / ] | ( )m

sE z t z s F K t s− ≤ −
a.s., whenever 0 , = 1,2, 4,s t a m≤ ≤ ≤  for a positive constant K  having a.s. continuous 
sample functions (and we say that the process satisfies a K -condition). 

It is known (see [18]) that if 2:[0, ]f a L→  is a measurable process adapted to the 

tF  and if || ( ) ||t f t→  is Lebesgue integrable on [0, ]a , then if 1z  and 2z  satisfy a K -

condition, the McShane integrals 10
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 where 
1 1
2 2= 2 .C Ka K+

An important class of McShane stochastic differential equations is the class of 
equation which have a canonical extension or a canonical form (as in McShane a), i.e. 
the equation (1) with the special case when 
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Among to this forward equations, in the optimal stochastic control appear some 
backward differential equations as the following 

1 1

=1

1

1
, =1

( ) ( , ( ), ( )) [ ( , ( ), ( ))] ( , )

[ ( , ( ), ( ))] ( ) ( ) =

r

j jt t
j

r

jk j kt
j k

Y t f s Y s Z s ds g s Y s Z s dz s

h s Y s Z s dz s dz s Y

ω+ + +

+

∑∫ ∫

∑ ∫
(5) 

 where { ( ), 0 1}jz t t≤ ≤ , = 1,2, ,j r…  is a stochastic process defined on the probability 
space ( , , )F PΩ  with the natural filtration { , 0 1}tF t≤ ≤  and 1Y  is a given 1F -
measurable random variable such that 2

1| | <E Y ∞ . Moreover, f  is a mapping from 
[0,1] R RΩ× × ×  to R  which is assumed to be \P B B B⊗ ⊗ -measurable, where P  is 

the σ -algebra of tF -progressively measurable subsets of [0,1]Ω× . Also g  is a 
mapping from [0,1] RΩ× ×  to R  which is assumed to be \P B B× -measurable. 

We remark that in the case of backward stochastic differential equations by the 
McShane type we have a canonical extension when replace the functions jkh  as above. 

In this context we consider the following forward-backward stochastic differential 
equation by the McShane type 
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with , , , : (0,1)a b f g R R R RΩ× × × × → , :h R R+ →  and the following hypotheses 
(which extend the result of Athanassov 1990 [2] for ordinary differential equations and 
includes other results on FBSDE): 

 i) , ,a b f  and g  is P B B B⊗ ⊗ ⊗  measurable functions; 
 ii) 2( ,0,0,0) ((0,1), )M Rϕ ⋅ ∈ , where ϕ  is any functions , ,a b f  or g

( 2 (0,1)M  is the set of all stochastic process which are square McShane integrable on 
[0,1] and tF -measurable for 0 1t≤ ≤ );

 iii) there exists ( )u t  a continuous, positive and derivable function on 0 < 1t ≤
with (0) = 0u , having nonnegative derivative ( ) ([0,1])u t L′ ∈ , with ( ) , 0u t t +′ →∞ →
such that  
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for all 1 2 1 2 1 2, , , , , , 0 1x x y y z z R t∈ ≤ ≤ , positive constant K  and ϕ  is any function 
, ,a b f  or g ;

 iv) with the same functions ( )u t  as above,  
2 2 2 2 2| ( , , ) | ( ) min(1 | | ,1 | | ,1 | | ), | ( ) | (1 | | ),t x y u t x y z and h y yϕ ′≤ + + + ≤ + (8) 

and 0X  is a finite random variable and 1Y  is given 1F -measurable random variable such 
that 2

1| | <E Y ∞ .
A similar forward-backward equation can be obtained using the canonical form. 

Option pricing 

The valuation of contingent claims is prominent in the theory of modern finances. 
Typical claims such as call and put options are significant not only in theory but in real 
security markets. 

The option pricing model developed by Black and Scholes [3], formalized and 
extended in the same year by Merton [21], enjoys great popularity. In [24] we give a 
McShane version of this model. A similar result was given few years later by Sontea 
and Stancu in [37].  An adequate and complete version was given in [32] and some parts 
of this version will be presented in the following. 

We consider a Black-Scholes market = ( , , )BSM S B φ  (see [10],[14]) where:  
 i) = { }tS S , 0[ , ]t t T∈ , 0 0t ≥  is the price process of a stock and we suppose that it 

satisfies the following differential stochastic equation by McShane type:  
2= ( , ) ( , ) ( , )( ) ,t t t t t tdS t S dt t S dz t S dzμ σ ρ+ + (9) 

 where
2 2 2 1( , ) = , ( , ) = , ( , ) = ,

1 2
b bt

t t t t t
Sbt S t S ct S t S c t S
t

β ββμ σ ρ
β

−−
−

(10)

with 1 < < 0b− , 0 < 1β ≤ , c R∈ ;
ii) = { }tB B , 0[ , ]t t T∈  is the price process of a bond and we consider that it 

satisfies the differential stochastic equation by McShane type:  
2= ( ) ;t tdB rdt l dz+ (11)

 iii) φ  is a trading strategy (see [22]) i.e. a pair 1 2= ( , )φ φ φ  of progressively 
measurable stochastic processes on the underlying probability space ( , , )F PΩ .

It is known (see [22]) that a trading strategy φ  over the time interval 0[ , ]t T  is 
self-financing if its wealth process ( )V φ , which is set equal  

1 2
0( ) = , [ , ]t t t t tV S B t t Tφ φ φ+ ∀ ∈

satisfies the following condition  
1 2

00 0 0
( ) = ( ) , [ , ]t t u u u ut t

t tV V dS dB t t Tφ φ φ φ+ + ∀ ∈∫ ∫
where the integrals are understood in the McShane sense.  

In [32] is proved the following results (using classical method of PDEs) 
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 Theorem 1. The arbitrage price at time 0[ , ]t t T∈  of the European call option 
with expiry date T  and strike price K  in the Black-Scholes market is given by the 
formula 

0= ( , ), [ , ],t tC c S T t t t T− ∀ ∈ (12)
where the function 0: [ , ]c R t T R+ × →  for 0 0t ≥  and the function 0: [ , ]c R t T R+ × →  (

0 0t ≥ ) given by the formula  
( ) ( )( , ) = ( ( ) ) ,B t s C tc s t D A t s K e

α +− (13)
and , , :[0, ]A B C T R→  are some continuous functions, D  is a positive constant and 

= 2α β− .

           Zero-bond pricing 

Let *T  be a fixed horizon date for all market activities. A  bond is a contract, 
paid for up-front, that yields a known amount on a known date in the future, the 
maturity date, *TT ≤ . The bond may also pay a known cash divident (the  coupon) at 
fixed times during the life of the contract. If there is no coupon the bond is known as 
zero-coupon bond.

In the financial analysis sense, by a zero-coupon bond (or a  discount bond) of a 
maturiy T we mean a financial security paying to its holder one unit of cash at a 
prespecified date T in the future. This mean that, by convention, the bond's principal 
(known also as  face value or  nominal value) is one dollar. 

We assume throughout that bonds are  default-free, that is, the possibility of 
default by the bond's issuer is excluded. The price of a zero-coupon bond of maturity T 
at any instant Tt ≤  will be denote by ),( TtB ; it is thus obvious that 1=),( TTB  for any 
maturity date *TT ≤ . Since there are no other payments to the holder, in practice a 
discount bond sells for less than the principal before maturity - that is, at a discount 
(hence the name). This is because one could no incetive to invest in a discount bond 
costing more than its face value. 

We consider a financial market analogous to Black-Scholes type (see [22]) with 
as financial underlying asset a zero-coupon bond with a fixed maturity date *TT ≤ . It is 
known that the price of such underlying assets, denoted with ),( TtB , can be compute 
using its interest rate (see [22]). 

Most traditional stochastic interest rate models are based on the exogenous 
specification of a  short-term rate of interest. We write tr  to denote the  instantaneous 
interest rate (also referred to as a  short-term interest rate, or  spot interest rate for 
borrowing or leading prevailing at time t  over the infinitesimal time interval ],[ dttt + .
In a stochastic setup, the short-term interest rate is modelled as an adapted process, say 
r , defined on a filtered probability space ),,( PFΩ  for some 0>*T . We assume 
throughout that r  is a stochastic process with almost all sample path integrable on 

][0,T  with respect to the Lebesgue measure. 
We suppose that the interest rate r  is gouverned by a stochastic differential 

equation by the McShane type of the following form:  

.))(,(),(),(= 2
ttt dzrtdzrtdtrtdr ρσμ ++   (13)

Pricing of a bond is technically harder than pricing an option, since there is no 
underlying asset with which to hedge (see [22]). In this situation only alternative is to 
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hedge with bonds of different maturity dates. For this reason we setup a portofolio 
containing two bonds with different maturities, 1T  and 2T . The bond with maturity 1T
has the price 1P  and the bond with maturity 2T  has price 2P . We denote the value of this 
portofolio with V. Thus we have that  

2211= PxPxV +
Theorem 2. In [25] we obtained that the equation of structure term for pricing on such 
bond it is 

rPPrtPrtrtrtP rrrt =),(
2
1)))(,(),(),(( 2σηλσρμ ++−++ (14)

 with the final condition  
.1=),( rTP     (15) 

The first results on this frame were developed by R. Negrea in [25] an represent 
the McShane version of two classical models given by Merton (see [20] and [21]) and 
Vaiscke (see [38]). 

In [27] using similar way, was analysed the  model developement by F. A. 
Longstaff (see [14]) for the classical Itô case and we assume that the dynamic of the 
interest rate is gouverment by the following stochastic differential equation by McShane 
type  

.)(= 2
ttt dzldzrdtradr ++− σ  (16) 

 which is in the canonical form for 
4

=
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The basic idea was to search a solution by the following form  
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 (the explicite analytical expression for )(τC  was obtained but it is in the respect to 
Gamma and Hypergeometric functions and was omited to write here). 

Now, using the above way, we consider a McShane stochastic evolution of 
short-term interest rate which extend the classical model of Cox-Ingersoll-Ross (see 
[11]), as following type:  
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.)(= 2
tttt dzldzrdtardr ++− σ    (20) 

In this case, the equation of structure term (14) become  
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We search a solution by the following form  
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 where |2|= 22 σα −−a .    

Also, in  [27] was developed the model of L. T. Evans, S. P. Keef, J. Okunev 
(see [13]) for Itô case for the evolution of short-term interest rate and we assume an 
adequate equation in the McShane sense as the following form  

22 )(= t
kt

t
ktkt

t dzledzredtraedr −−− ++σ   (24) 

In a similar manner as in the above example we search an explicite formula for 
the price of a zero-coupon bond by the form (14). 

The functions )(τA , )(τB  and )(τC  result from the following differential 
system:  
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with initial conditions 0=(0)=(0)=(0) CBA .
We note that, in this case, the expressions for )(τA , )(τB  and )(τC  can be 

obtained but they are in respect to Bessel and Hypergoemetric functions and they were 
not given here. Naturally, if we replace parameters of model ( a , σ , λ , η  and k ) with 
their estimations we obtain a simplified forms for this functions. 

            Conclusions 

We proposed a model for the behavior of the financial assets on some unstable 
financial markets. The evolution on these markets is characterized by some "smoothed" 
life-time and some very "noises" life-time and this time periods are hard unexpected. 
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For these reasons, we propose an approach somehow, more general as there for a free 
financial market. Out study is just at the begining, but, as inthe example form above, the 
obtained results sustain our modeling for applications on the Romanian finacial market 
where the noise market is not a classical Gaussian noise, there exists more others 
random or non-random perturbations. 
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