

 874

ANALYZE THE EFFICIENCY OF KEYWORD SEARCH

ALGORITHMS

DANIELA ENACHESCU, ANDREEA RADULESCU

UNIVERSITATEA PETROL-GAZE, PLOIESTI, UNIVERSITÉ LIBRE DE BRUXELLES,

BRUXELLES denachescu22@yahoo.com

Abstract:

This paper intends to analyze, through developed software, the answer of various

algorithms to keyword search in random strings problems within the constraint of

time and memory space used.

The program developed is able to choose, depending on the algorithm used, the

maximum number of characters used to comply with data constraints. Afterwards,

the performance of algorithms in operations of keyword search in random strings is

analyzed.

Tests were performed by generating random texts of different lengths, using different

character sets.

Results can be used to minimize search time, such as in the FIND function used by

text editors.

Key words: String matching, keyword search, text editors (word processing)

JEL classification: C6

INTRODUCTION

 The purpose of this study was to develop a software in order to analyze the

answer of three different string matching algorithms. In order to test each algorithm, the

software is capable to generate random strings of different lengths and using alphabets

with a specific size. This method has a complexity of O(n), n being the number of the

characters of the string you want to generate. This process depending only on the length

of the strings, will not influence differently the time response of the three algorithms in

a test with the same length of the chains.

 This software could be used to analyze any keyword matching algorithm and in

order to make it more efficient for the user we decided to automate all treatments. The

program is able to choose, depending on the algorithm, the maximum number of

characters to use so that the time constraints (maximum 2 minutes) and space

constraints (max. 8MB) will be respected. Afterwards, it computes the different size of

strings that can be tested which will respect the constraints.

 The three algorithm are using two different chains named S and T. The lengths

of these strings, ns and nt, are pre-calculated before each algorithm.

 In the begging of the paper we will present the 3 different algorithms used in the

software, their complexity and their structure. The results of the different tests will be

presented in the fourth part of the paper along with the complexity deduced for the test

curves.

1
st
 algorithm

 The first algorithm presented is inspired from the Boyer-Moore algorithm and it

consists in finding the longest suffix between each possible sub-strings of S and T.

 This algorithm starts by filling a table with the numbers of the common

consecutive characters for each pair (ns,nt). Then, it searches in the same table the

maximum value and returns it.

 875

 In order to find the number of common consecutive characters, the algorithm

will compute the longest common suffix between the substring from the 1
st
 character to

the i
th

 character of the chain S and the substring from 1 to j
th

 of the string T (i can take

values between 1 and the length of S and j from 1 to the length of T). Thus, if i=1 then

the algorithm will make a single comparison for each j from 1 to nt. If i=2, only one

comparison will be make for j=1 and 2 comparison for j from 2 to nt. More generally,

for a value of i=k, the algorithm will make, for each value of j from 1 to nt, min(k,j)

comparison. Therefore, we can deduce that the complexity of the algorithm is O(ns*nt).

 The algorithm contains a method that fills the matrix with the number of

characters, LSuff. In the worst case, this method compares n characters, n being the

minimum value between the lengths of the two chains. The maximum number of

comparisons occurs when one of the chains is the suffix of another string.

1 Method LSuff(S: string, T: string, ns: integer, nt: integer)

2 if S[i] = T[j] then

3 nb := 1

4 else

5 nb := 0

6 endif

7 if nb ≠ 0 and i > 0 and j > 0 then

8 nb := nb + LSuff(S, T, i - 1, j - 1)

9 endif

10 return nb

1 Method algoA1(S: string, T: string, ns: integer, nt: integer)

2 for i from 0 to ns-1 do

3 for j from 0 to nt-1 do

4 MLSuff[i,j] := LSuff(S, T, i, j)

5 endfor

6 endfor

7 max := 0

8 for i from 0 to ns-1 do

9 for j from 0 to nt-1 do

10 if MLSuff[i,j] > max then

11 max := MLSuff[i,j]

12 endif

13 endfor

14 endfor

15 return max

2
nd

 algorithm

 The second algorithm represents an improvement of the naïve algorithm.

 The main idea for this algorithm is to compare all sub-chains of the first string to

all the sub-chains of the second. The algorithm will compare, for each sub-word with a

number of characters from 1 to ns, belonging to S and to T, each character of a sub-

chain of S to each character of a sub-chain of T. Thus, for a length of the sub-chains

equals to 1, the algorithm will make one comparison for ns*nt sub-chains. For a length

of 2, the algorithm will make two comparisons for (ns-1)*(nt-1) sub-chains. More

generally, for a sub-word of length of l, the algorithm will make l comparisons, for (ns-

l+1)*(nt-l+1) sub-chains, with l taking values between 1 and ns. The overall complexity

is O(ns*ns*nt).
1 Method algoA2(S: string, T: string, ns: integer, nt: integer)

2 max := 0

3 for l from 1 to ns do

4 for i from 0 to ns-l do

5 for j from 0 to nt-l do

6 found := true

7 for k from 0 to l-1 do

8 if S[i + k] ≠ T[j + k] then

 876

9 found := false

10 endif

11 endfor

12 if found = true then

13 max := l

14 endif

15 endfor

16 endfor

17 endfor

3
rd

 algorithm

 The third algorithm is inspired for the Knuth-Morris-Pratt algorithm and the

length of the fist string, S, has to be smaller that the length of the string T.

 This algorithm allows finding the length of the longest substring of S which is

common to T. For each sub-word of S, the algorithm has a phase of pre-treatment. In

this part, the table PMKij allows to find faster if there is a correspondence between a

sub-string from S in T. At the end, the algorithm returns the maximum between all the

sub-strings of S that appears in T.

1 Method algoA3(S: string, T: string, ns: integer, nt: integer)

2 for i from 0 to ns-1 do

3 for j from i to nt do

4 Mij := S[i..j]

5 a := 0

6 b := -1

7 PMKij [0] := -1

8 while a < mij do

9 while b > -1 and Mij[a] ≠ Mij[b] do

10 b := PMKij[b]

11 endwhile

12 a := a + 1

13 b := b + 1

14 if a < mij and Mij[b] then

15 PMKij[a] := PMKij[b]

16 else

17 PMKij[a] := b

18 endif

19 endwhile

20 bool_res := false

21 a := 0

22 for b from 1 to nt do

23 while a > -1 and Mij[a] ≠T[b] do

24 a := PMKij

25 endwhile

26 a := a + 1

27 if a ≥ mij then

28 bool_res := true

29 a := PMKij[a]

30 endif

31 endfor

32 endfor

33 endfor

Results and Conclusion:

In order to test the results of the algorithm in function of the length of the data,

we tested each algorithm with strings randomly generated and using different numbers

of letters of the alphabet. If in the case of a 26 letters alphabet, the length of the longest

sub-string common to each pair of S and T can be small, we have also performed tests

with a smaller alphabet. The complexity of the algorithm for generating strings is the

 877

same, no matter what number of letters contains the alphabet used for S and T. Knowing

that we can analyze in the same way the influence of the types of input chains in the

algorithms.

Because the number of the letters in the alphabet does not influence much the

behavior of the algorithms, we are going to present only the tests with alphabets of 26

and 10 different letters. As we can see in the graphics, the difference in response times

between the two types of test series was low. For tests using randomly generated strings

with only 10 different letters of the alphabet, the algorithm response time is only

slightly larger than the tests using 26 letters.

Fig. no.1

Fig. no.2

 878

In the above curves, we can see that the first algorithm runs linearly both in

relation to the length of the string S or T. This implies that the complexity of this

algorithm is polynomial. By analyzing the different curves of the execution time we

could found the equation of the function associated with the complexity of this

algorithm:

 4 * 10
-5

x – 1,4 * 10
-3

We can deduce than, that the execution time of the first algorithm is O(n
2
).

Fig. no. 3

Fig.no.4

For the second algorithm we can see in the graphics that the execution time

increases faster than for the first algorithm, regarding to the length of S and also to the

 879

length of T. This implies that the complexity of this algorithm is polynomial. The

function associated to the complexity of the algorithm is:

 5*10
-5

x
2
 + 7,3 * 10

-2
x +1,57

For the third algorithm we can see a small improvement in the run time.

Fig. no.5

Fig.no.6

In order to see the impact of the amount of letters of the alphabet used in the

string generation, we have tested each algorithm with different size alphabets.

As we can see in the graphics of the first algorithm with a 10 letters alphabet, the

behavior of the curves resembles a lot with the tests using an alphabet using 26 letters.

After numerous tests, we could conclude that the size of the alphabet is not an important

factor in the execution time for any of the three algorithms.

 880

Fig.no.7

Fig. no.8

The goal of this work is to analyze the efficiency of algorithms in search

operations using strings of different lengths in time constraints (maximum 2 minutes)

and space constraints (max. 8MB) and the possibility of using these results in operations

such as Find in text editors, browsers, etc..

BIBLIOGRAPHY

Aho A.V., Corasick M.J., Efficient string matching: An aid to bibliographic search,

Communications of the ACM, vol. 18, issue 6, pages 333–340, juin 1975;

Aho A.V, Algorithms for finding patterns in strings. in Handbook of Theoretical

Computer Science, Volume A, Algorithms and complexity, J. van Leeuwen ed., Chapter

5, pp 255-300, Elsevier, Amsterdam, 1990;

 881

Baase, S., Van Gelder, A., Computer Algorithms: Introduction to Design and Analysis,

3rd Edition, Chapter 11, Addison-Wesley Publishing Company, 1999;

Cormen, T. H.; Leiserson, C. E., Rivest, R. L., Stein, Clifford Introduction to

Algorithms (3rd ed.). MIT Press and McGraw-Hill,1990 (2009);

Crochemore, M., Off-line serial exact string searching, in Pattern Matching Algorithms,

ed. A. Apostolico and Z. Galil, Chapter 1, pp 1-53, Oxford University Press, 1997;

Fertin G, Rusu I., Algorithms in Computational Molecular Biology: Techniques,

Approaches and Applications, in Computing Genomic Distances: An Algorihtmic

Viewpoint, Wiley Science, 2011;

Gonnet G.H., Baeza-Yates R.A., Handbook of Algorithms and Data Structures in

Pascal and C, 2nd Edition, Chapter 7, Addison-Wesley Publishing Company, 1991;

Knuth D, James H. Morris, Jr. et Vaughan Pratt. Fast pattern matching in strings. SIAM

Journal on Computing, 6(2):323–350. 1977;

Morris (Jr) J.H., Pratt V.R., A linear pattern-matching algorithm, Technical Report 40,

University of California, Berkeley, 1970;

Sedgewick, R., Algorithms in C, Chapter 19, Addison-Wesley Publishing Company,

1988;

Stephen, G.A., , String Searching Algorithms, World Scientific, 1994;

Wirth, N., Algorithms & Data Structures, Chapter 1, pp. 17-72, Prentice-Hall, 1986.

http://en.wikipedia.org/wiki/Thomas_H._Cormen
http://en.wikipedia.org/wiki/Charles_E._Leiserson
http://en.wikipedia.org/wiki/Ron_Rivest
http://en.wikipedia.org/wiki/Clifford_Stein
http://en.wikipedia.org/wiki/MIT_Press
http://en.wikipedia.org/wiki/McGraw-Hill
http://fr.wikipedia.org/wiki/Donald_Knuth
http://fr.wikipedia.org/w/index.php?title=James_H._Morris,_Jr.&action=edit&redlink=1
http://fr.wikipedia.org/w/index.php?title=Vaughan_Pratt&action=edit&redlink=1

