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Abstract: 

   We firstly make a short description of de concept of difference equation, equilibrium 
points, classification and the cobweb diagram. We will present an economical 
example for better understanding these concepts. Then we will simplify the cobweb 
model present by [OnSiYo].  We will analyse the new model and we will present 
some graph representations by using Mapple for sustain the theoretical results. We 
also suggest another model which can be analyzed in the same way.  
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1. Introduction 

 
Difference equations describe the evolution of certain phenomena over the 

course of time. For example, if a certain population has discrete generations, the size of 
the (n+1)th generation x(n+1) is a function of the nth generation x(n). This relation 
expresses itself in the difference equation 

( ) ( )( )nxfnx =+1              (1) 
 We consider then ( ) ( ){ } ( ) ( ){ }00000 ,,,0: xfxfxnxfxO nn L=≥=  the (positive) 
orbit of 0x , where ( )0xf n  is the nth iterate of 0x  under f . This iterative procedure is an 
example of a discrete dynamical system. Letting ( ) ( )0xfnx n= , we have 
( ) ( ) ( )[ ] ( )( )nxfxffxfnx nn ===+ +

00
11 . 

 In many applications in economics it is desirable that all solutions of a given 
system tend to its equilibrium point. We now give the formal definition of an 
equilibrium point. 
 
Definition 1.1 (Elaydi, 2005) A point ∗x  in the domain of f is said to be an equilibrium 
point of equation (1) if it is a fixed point of f, i.e., ( ) ∗∗ = xxf . 

Graphically, an equilibrium point is the x-coordinate of the point where the 
graph of f intersects the diagonal line y = x (Figure 1.1). 

         
                  (a)     (b) 

Figure 1: (a) Fixed points of ( ) 3xxf = ; (b) Fixed points of ( ) 12 +−= xxxf . 
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It is possible in difference equations that a solution may not be an equilibrium 

point but may reach one after finitely many iterations. In other words, a nonequilibrium 
point may go to an equilibrium point in a finite time. This leads to the following 
definition. 

 
Definition 1.2.( Elaydi, 2005) Let x be a point in the domain of f. If there exists a 
positive integer r and an equilibrium point ∗x  of equation (1) such that 

( ) ( ) ∗−∗ ≠= xxfxxf rr 1, , then x is an eventually equilibrium (fixed) point. 
One of the main objectives in the study of a dynamical system is to analyze the 

behavior of its solutions near an equilibrium point. This study constitutes the stability 
theory. Next we recall the basic definitions of stability. 

 
Definition 1.3.( KL)   

(a) The equilibrium point ∗x of equation (1) is stable (Figure 2) if given 0>ε there 
exists 0>δ such that δ<− ∗xx0 implies ( ) ε<− ∗xxf n

0  for all 0>n . If ∗x  is 
not stable, then it is called unstable (Figure 2.a). 

(b) The point ∗x  is said to be attracting if there exists 0>η  such that 
( ) η<− ∗xx 0  implies ( ) ∗

∞→
= xnx

n
lim . If ∞=η , ∗x  is called a global attractor or 

globally attracting (Figure 2.b). 
(c) The point ∗x is an asymptotically stable equilibrium point if it is stable and 

attracting. If ∞=η , ∗x  is said to be globally asymptotically stable (Figure 2.c). 
 

 
           (a)       (b) 

 
(c) 

Figure 2:  (a) Stable ∗x . (b) Unstable ∗x . (c) Asymptotically stable ∗x . 
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To determine the stability of an equilibrium point from the above definitions 
may prove to be a mission impossible in many cases. This is due to the fact that we may 
not be able to find the solution in a closed form even for the deceptively simple-looking 
equation (1). In section 2 we highlight a graphical technique that allows us to 
understand the behavior of solutions of equation (1) in the neighbourhood of 
equilibrium points. 

 
2. The Stair Step (Cobweb) Diagrams 
An important graphical method for analyzing the stability of equilibrium (and 

periodic) points for equation (1) is the stair step (cobweb) diagrams. 
Since ( ) ( )( )nxfnx =+1 , we may draw a graph of f in the ( ) ( )( )1, +nxnx  plane. 

Then, given ( ) 00 xx = , we pinpoint the value 1x  by drawing a vertical line through 0x  so 
that it also intersects the graph of f at ( )10 ,xx . Next, draw a horizontal line from ( )10 ,xx  
to meet the diagonal line y = x at the point ( )11 ,xx . A vertical line drawn from the point 
( )11,xx  will meet the graph of f at the point ( )21,xx . Continuing this process, one may 
find ( )nx  for all 0>n . 

 
Example 2.1. ( Eladyi, 2005)  The Cobweb Phenomenon – the pricing of a certain 
commodity. 
Let: 
 ( )nS   - the number of units supplied in period n; 
 ( )nD  - the number of units demanded in period n; 
 ( )np  - the price per unit in period n; 
 0>dm - the sensitivity of consumers to price; 
 0>sm - the sensitivity of suppliers to price. 

We assume that ( )nD  depends only linearly on ( )np and is denoted by 
( ) ( ) 0, >+−= ddd bbnpmnD  (the  price-demand curve)                               (2) 

We assume that the price–supply curve relates the supply in any period to the 
price one period before, i.e.  ( ) ( ) 0,1 >+=+ sss bbnpmnS                      (3)  

The slope of the demand curve is negative because an increase of one unit in 
price produces a decrease of dm  units in demand. Correspondingly, an increase of one 
unit in price causes an increase of sm  units in supply, creating a positive slope for that 
curve. 

We assume that the price is the price at which the quantity demanded and the 
quantity supplied are equal, that is, at which ( ) ( )11 +=+ nSnD . 

Thus  ( ) ( ) ( ) ( ) ( )( ),11 npfBnApnpbnpmbnpm ssdd =+=+⇒+=++−       (4) 

   where
d

sd

d

s

m
bb

B
m
m

A
−

=−= , .                                                    (5) 

This equation is a first-order linear difference equation. The equilibrium price 
∗p  is defined in economics as the price that results in an intersection of the supply 
( )1+nS and demand ( )nD  curves. Also, since ∗p  is the unique fixed point of ( )pf  in 

(4),
A

Bp
−

=∗

1
. Because A is the ratio of the slopes of the supply and demand curves, 

this ratio determines the behavior of the price sequence. There are three cases to be 
considered (the three cases are simultaneous depicted graphically using the stair step 
diagram): 
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(a) 01 <<− A : 
- In this case, prices alternate above and below but converge to the equilibrium price ∗p . 
In economics lingo, the price ∗p  is considered “stable”; in mathematics, we refer to it 
as “asymptotically stable” (Figure 3.a). 

(b) 1−=A : 
- In this case, prices oscillate between two values only. If ( ) 00 pp = , then ( ) 001 Bpp +=  
and ( ) 02 pp = . Hence the equilibrium point ∗p  is stable (Figure 3.b). 

(c) 1−<A : 
- In this case, prices oscillate infinitely about the equilibrium point ∗p  but progressively 
move further away from it. Thus, the equilibrium point is considered unstable (Figure 
3.c). 

 
   (a)     (b) 

 
(c) 

Figure 3: (a) Asymptotically stable equilibrium price; (b) Stable equilibrium price;  
(c) Unstable equilibrium price. 

 

An explicit solution of (4) with ( ) 00 pp = is given by ( )
A

BA
A

Bpnp n

−
+⎟

⎠
⎞

⎜
⎝
⎛

−
−=

110 . 
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2. Application 
 

 2.1. Its model 
 Our starting point is a recent economical problem and his model described in 
[OnSiYo]. The aim of our approach is a better understanding of the behaviour of a new 
type of cobweb model. 
 
The problem: A farmer has to decide how much to produce in a certain period before 
price is determined and sales revenues are received.  
 
The model: - at period t, a supplier decides his production 1+tx  for period t+1. As he 
knows well, even a production plan that maximizes profits may turn out to be a disaster 
in reality. He calculates the profit maximum 1

~
+tx  and uses it as a target of adjustment. 

The calculation is done relative to the quadratic cost function 0,
2

2 >bxb and naive price 

expectation, which means that his price expectation for the next period is equal to the 
current price tp . 

Thereby, in the [OnSiYo] page 103, the model of this problem can be reduced to 
the following first-order difference equation 

( ) β

αα
t

tt z
zz +−=+ 11 , 

where ( )1,0∈α  is the speed of adjustment and 0,1
>β

β
 the constant price elasticity. 

 Next, we will present two slightly different adjustment models for this problem: 
the first model is a simplified one and the second is a generalized model. 
 
2. 2 The new model. 
  We will consider the following first-order difference equation: 

( )
t

tt z
zz

+
+−=+ 1

11
βα          (6) 

 In the initial model, we have replaced β

α

tz
 with

tz+1
β . Notice that both functions 

are decreasing to 0 at infinity. 
 
Analysis of the model 
 Our model (6) can be reformulated by the two-parameter family of functions 

∗
+

∗
+ →RRf :,βα  as 

( ) ( ) ( ) ( )∞∈∈
+

+−= ,0,1,0,
1

1, βαβαβα x
xxf . 

which,  for simplicity, will be expressed as f. 
 First we will find the fixed point for f using for the computation the Maple 9 

software, i.e.: ( )
α
β41

2
1+

2
1- +=⇔= ∗∗∗ xxxf .  There are two fixed points of f, but 

only one is positive. 
 We calculated the first and second derivatives by using the Maple software and 
we obtained: 

( )
( )

( )
( )

∗
+∈>

+
=′′

+
−−=′ Rx

x
xf

x
xf ,0

1
2,

1
1 32

ββα , 
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which show us that f is a strictly convex and unimodal function on ∗
+R . 

 We calculate then the value of the first derivative in the fixed point: 

( )βαϕ

α
β

βα ,
411

41)( 2
* =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

−−=′ xf  

 The graph of function f for some values of  α  and β  is presented in Figure 4. 
 If  ( )1,1)( * −∈′ xf  then there exists a closed interval  *xV  of *x  such that 

1)( <<′ lxf  on *xV ,  and we obtain that ∗∗ −≤− xxlxxf )( ; this implies that  *x  is 
an attractive point. More exactly,  

1. *xV  is invariant, i.e. ( ) ** xx VVf ⊂ ; 
2. f is a strict contraction1 on *xV . 

 Using the Banach2 fixed point theorem we obtain that *x  is a fixed point locally 
attractive. 

 
Figure 4: Graph of f for 7.0=α  and 10=β  

We evaluate )( *xf ′  for α  from 0.01 to 0.99 and for β  from 0 to 400 (see 
Figure 5).We observes in Figure 5 that for different values of α  and β  the 

                                                 
1 Definition: XXf →: , f is a strict contraction if there exist a  ( )1,0∈α  such that 

( ) ( )( ) ( ) Xyxyxdyfxfd ∈∀< ,,,, α . 
 
2 Theorem (Classical Banach fixed point theorem): Let ),( dX be a complet metric 
space. If  XXf →: is a strict contraction then there exist a unique Xx ∈*  such that 
( ) .** xxf =  Moreover *x  star is the limit of successive approximations, starting at any 

point of X. 
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value lxf <′ ∗ )(  is always under 1 this implies that *x  is a globally attractive fixed 

point and ( )∞= ,0*V  is its domain of attraction.   

 

Figure 5: The values of )( *xf ′ , where 
( )
( )400,0

1,0
∈=
∈=

β
α

d
c

 

 
 
 Using the “Cobweb Program” which is implemented in Maple 9 (see 
[Elaydi], page 519) we obtain the following cobweb diagrams: 

(a) 



 475

(b) 
Figure 5: Cobweb diagrams for f 
(a) 300,01.0,1.00 === βαx  
(b) 300,01.0,1680 === βαx  

 If we set α  very little and set β  to a big value we have the impression that the 
sequence tend to infinity (see Figure 5.a). In reality, the fixed point is very big 
( *x =172.7) and if we set ( )200,100∈x  and 1680 =x  we observe that the graph of f (the 
red line in Figure 5.b) go from upper de first bisector under the first bisector. This mine 
that f have a fixed point. 
 
A discussion on the parametersα  and β  

We discus now the behavior of parametersα , β  on the curve ( )
( )2

2

21
1

c
ccd

+−
+−

−=   

(we have obtaining this curve by solving ( ) 0=′ ∗xf ). 

Case 1: ∗< xxmin  
Let minx<γ  with ( ) ∗= xf γ  
1. If ( )∞∈ ∗ ,0 xx  then the sequence nx is decreasing to the fixed point. 
2. If  γ<0x  then ∗> xx1  and the sequence nx  is decreasing to the fixed point. 
3. If  min0 xx <<γ hen ( )∗∈ xxx ,min1 and the sequence nx  is increasing to the fixed 

point. 
Case 2: minxx <∗   
 We observe that the sequence nx  oscillates and converges to the fixed point (see 
Figure). 

Case 3: ( )∈βα , the curve ( )
( )2

2

21
1

c
ccd

+−
+−

−= ; then ∗= xxmin  (see Figure 6) 

 From 1x  the graph decreases to the fixed point ∗x , regardless of the 0x  position. 
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Figure 6: Graph of the curve β  

 In the following figures, for different values of parameters α and β , the cobweb 
diagrams are presented and, as a  conclusion, we see that ∗x  is an asymptotically stable 
equilibrium.   
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Figures 7, 8, 9: The cobweb diagrams for f 

 
Figure 10: The cobweb diagram for f  
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Remark. Except for obvious modifications, the above method can be used to 
study the following generalized model of the initial problem: 

( ) β
β βα

t
tt z

zz +−=+ 11 . 

 
4. Conclusions 
 

For analysing the cobweb model, the following notions have been used:  
- the monotony: the behaviour of the recurrent sequences is precisely determined 

for monotone functions; 
- the contraction mappings and the classical Banach fixed point theorem; 
- the cobweb diagrams and there implementation by using the Maple 9 software ( 

easyer computations and have graphical representation of the cobweb diagrams). 
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