STATIONARY SEQUENCES OF DISTRIBUTION ON HILBERT SPACE

Ramona VASIU ROMANIAN-GERMAN UNIVERSITY OF SIBIU

Abstract:

In this paper we develop the correlation theory of a stationary process of distribution and culminating in the now classical Wold decomposition theorem. The fundamental notion of correlation theory of a stationary process of distribution such as distribution, sequence of distribution, normal and orthogonal process, process of innovation, deterministic are define in this context.

Key words: stationary process, distribution, Wold decomposition

JEL classification: C00

Preliminaries

K will stand for a separable complex Hilbert space. Let (Ω, B, P) be a probability space. We write *K'* for the complex Hilbert space $L^2(\Omega, B, P)$. The inner products in *K*, *K'* will be denoted booth by (.,.) the risk of confusion being hereby small.

Definition 1. A distribution on K is a continuous linear map from K to K'.

In this paper familiar mathematical object is given a new name. One reason is that for some purposes it is useful to consider certain equivalence classes of distribution [4], and in doing this the structure of the probability space underlying K' is used more crucially than we have indicated.

Definition 2. Let F, G be the distribution on K. For $y, z \in K$ consider the continuous conjugate bilinear functional (Fy,Gz). By the Riesz theorem there is a **bounded operator** $\langle G,F \rangle : K \to K$ such that $(Fy,Gz) = (\langle G,F \rangle y, z)$. We call $\langle G,F \rangle$ the Gramian of F,G.

It is clear that $\langle G, F \rangle = \langle F, G \rangle^*$ and that $\langle F, F \rangle$ is a non-negative operator.

Definition 3. Let $\{F_n\}_{-\infty}^{+\infty}$ be a sequence of distribution. We say

- (a) $F_i \perp F_i \text{ if } \langle F_i, F_i \rangle = 0;$
- (b) F_i is normal if $\langle F_i, F_i \rangle = I$;
- (c) The sequence $\{F_n\}_{-\infty}^{+\infty}$ is orthogonal if $i \neq j \Rightarrow F_i \perp F_j$;
- (d) The sequence is orthonormal if $\langle F_i, F_j \rangle = \delta_{ij}I$.

Definition 4. By D we shall denote the set of all distributions, endowed with the normal topology of the space of continuous linear maps $K \to K'$.

Definition 5. (i) A linear manifold in D is a non-void subset $M \subset D$ such that if $F_1, F_2 \in M$, $A_1, A_2 \in B(K)$ than $F_1A_1 + F_2A_2 \in M$.

Definition 6. $\sigma(F_n)_{-\infty}^{+\infty}$ will stand for the minimal subspace containing $\{F_n\}_{-\infty}^{+\infty}$. **Definition 7.** If $(M_j)_{j\in J}$ is a family of subspaces of D, then by $\sum_{j\in J} M_j$ we mean the set

of all sums $\sum_{j \in J} F_j$ which conserve in D with $F_j \in M_j$.

Using the above definitions, we can now check the following properties.

(1) Let $F_{i}, G_{k} \in D$, $A_{i}, B_{k} \in B(K)$, j, k = 1, ..., n. Then

$$\left\langle \sum_{k=1}^{n} G_{k} B_{k}, \sum_{j=1}^{n} F_{j} A_{j} \right\rangle = \sum_{k=1}^{n} \sum_{j=1}^{n} B_{k}^{*} \left\langle G_{k}, F_{j} \right\rangle A_{k}.$$

- (2) If $F, G \in D$ then $F \perp G$ if and only if $(Fe_i, Ge_i) = 0$ where $(e_i)_1^{+\infty}$ is a complete orthonormal set in K.
- (3) $\{F_j\}_{j\in J}$ is an orthonormal set in D if and only if the set $\{F_je_k \mid j \in J, k = 1, 2, ...\}$ is an orthonormal set in K', $(e_i)_1^{+\infty}$ being as in (2).
- (4) Let $\{F_n\}_{-\infty}^{+\infty}$ be a sequence in D such that $\langle F_m, F_n \rangle = \delta_{mn}T_n$ where T_n is a nonnegative operator in B(K) for each n. If T_n is invertible in B(K) for each n, then $F_nT_n^{-1/2}$ is an orthonormal sequence in D.
- (5) $M \subset D$ is a closed subspace of D if and only if there is a closed subspace M' of K' such that $M = \{F \mid F \in D, and Fx \in M' \text{ for each } x \in K\}$. We call this subspace M' the subspace associated with M.
- (6) Let *M* be a closed subspace of *D* and $F \in D$. Then there is a unique element (F | M) of *M* such that $\langle G, F (F | M) \rangle = 0$ for each $G \in M$. (F | M) shall be called the orthogonal projection of *F* on *M*. In fact, if $x \in K$, $(F | M)x = P_{M'}Fx$ where $P_{M'}$ is the orthogonal projection on *M'* in *K'*.
- (7) Let M, N be the subspaces of D with $M \subset N$, then clearly $M' \subset N'$. Then there is a unique subspace $N \Theta M$ of D such that $M \oplus (N \Theta M) = N$ and $M \perp (N \Theta M)$. In fact $N \Theta M$ is the unique subspace of D whose associated subspace is $N' \Theta M'$, the orthogonal complement of M' in N'.
- (8) Let *M* be a subspace of *D* and $F \in D$. If $G \in M$ then we have $\langle F - (F | M), F - (F | M) \rangle \prec \langle F - G, F - G \rangle$ where $A \prec B$ means that B - A is non-negative.
- (9) If M, N are the subspaces of D such that $M \perp N$ then $M \oplus N$ is a subspace of D and if $F \in D$ then

$$(F | M + N) = (F | M) + (F | N).$$

- (10) If M, N are the subspaces of D such that $M \subset N$ and if $F \in D$ then $\langle (F | M), (F | M) \rangle \prec \langle (F | N), (F | N) \rangle$.
- (11) If $M_k k = 0, \pm 1, \pm 2, ...$ are subspaces of D such that $M_k \supset M_{k+1}$ and if $M = \bigcap_{-\infty}^{+\infty} M_k$ then if $F \in D$, we have $(F \mid M) = \lim_{k \to \infty} (F \mid M_k).$

The Wold decomposition

Let $\{F_n\}_{-\infty}^{+\infty}$ be a stationary sequence of distributions on K. We set M'_{∞} the closure in K' of the union of the ranges of $\{F_n; n = 0, \pm 1, \pm 2, ...\}$ and call this the universe of our process. It is clearly a separable subspace of K' and is easily seen to be the associated subspace of the subspace $\sigma(F_n)_{-\infty}^{+\infty}$ of D.

We define an operator U on elements of M'_{∞} of the form

$$\sum_{j=-N}^N\sum_{k=-M}^M a_{jk}F_je_k ,$$

where N, M are integers and the e_k are arbitrary elements of K by

(12)
$$U\left(\sum_{j=-N}^{N}\sum_{k=-M}^{M}a_{jk}F_{j}e_{k}\right) = \sum_{j=-N}^{N}\sum_{k=-M}^{M}a_{jk}F_{j+1}e_{k}.$$

U clearly maps the linear manifold of elements of M'_{∞} of the above form onto itself in a one-one manner. Further, the assumption that $\{F_n\}_{-\infty}^{+\infty}$ is stationary shows, after an easy computation, that *U* preserves inner products. Since elements of the form above are dense in M'_{∞} , *U* can be extended to a unitary operator on *K'* which maps M'_{∞} onto itself. While that is true that the extension is not unique, any two extension have clearly the same restriction to M'_{∞} . From now on we can and do assume that $K' = M'_{\infty}$ so that *U* is uniquely defined on K'. *U* is called the shift operator of the process.

Let us write

$$M_{k} = \sigma(F_{n})_{-\infty}^{k}, \ M_{-\infty} = \bigcap_{-\infty}^{+\infty} M_{k}$$

and call these subspaces of D "the universe of the process up to time k" and respectively "the remote past of the process". It is easy to see that

$$U^{n}M_{k} = M_{k+n}$$
$$U^{n}(F_{j} \mid M_{k}) = (F_{j+n} \mid M_{k+n})$$

Definition 8. The process of distribution $\{G_n\}_{-\infty}^{+\infty}$ defined by

$$G_n = F_n - (F_n \mid M_{n-1})$$

is called the **process of innovation** of F_n . It is clear that $\{G_n\}_{-\infty}^{+\infty}$ is stationary, $G_n = U^n G_0$ and further that $\langle G_m, G_n \rangle = \delta_{mn} S$, where S is a non-negative operator independent of n.

Definition 9. $\{F_n\}_{-\infty}^{+\infty}$ is said to be **purely deterministic** if $G_n = 0$ for all n. If not we call non-deterministic.

The operator $S = \langle G_n, G_n \rangle$ will be called the **prediction error operator** of $\{F_n\}_{-\infty}^{+\infty}$. It is a bounded non-negative operator and is zero if and only if $\{F_n\}_{-\infty}^{+\infty}$ is purely deterministic.

Definition 10. We say that $\{F_n\}_{-\infty}^{+\infty}$ has **nearly full rank** if *S* has trivial null space and it is said to have **full rank** if *S* admits bounded inverse.

The following theorem is preliminary to the Wold decomposition.

Theorem 1. Let $\{G_n\}_{-\infty}^{+\infty} \in D$ such that $\langle G_m, G_n \rangle = \delta_{mn}S$ where $S \neq 0 \in B(K)$. Then (a) $\sigma(G_n) \perp \sigma(G_m)$ if $n \neq m$; (b) If $H = \sum_{n=-\infty}^{+\infty} H_n$, $K = \sum_{n=-\infty}^{+\infty} K_n \in D$ with $H_n, K_n \in \sigma(G_n)$, then $\langle H, K \rangle = \sum_{n=-\infty}^{+\infty} \langle H_n, K_n \rangle$;

(c)
$$\sum_{-\infty}^{\infty} \sigma(G_n) = \sigma(G_n)_{-\infty}^{+\infty}$$
;

- (d) If S is invertible, then every element of $\sigma(G_n)$ is of the form G_nA with $A \in B(K)$;
- (e) If $K \in D$, then there exist $K_n \in \sigma(G_n)$ such that

$$\left(K \mid \sigma(G_n)_{-\infty}^{+\infty}\right) = \sum_{n=-\infty}^{+\infty} K_n \text{ and } \langle G_n, K \rangle = \langle G_n, K_n \rangle.$$

Further, if S is invertible then there exist $A_n \in B(K)$ such that $K_n = G_n A_n$ and $\langle G_n, K \rangle = SA_n$.

Theorem 2. (Wold decomposition) Let $\{F_n\}_{-\infty}^{+\infty}$ be a stationary process in D and let $\{G_n\}_{-\infty}^{+\infty}$ be its innovation process. Let M_n, N_n be the universes up to time n of $\{F_n\}_{-\infty}^{+\infty}$ and respectively $\{G_n\}_{-\infty}^{+\infty}$. Then we have

- (i) $F_n = P_n + Q_n$ where $P_n = (F_n | N_n)$, $Q_n = (F_n | M_{-\infty})$, $P_n \perp Q_n$ for each n;
- (ii) $P_n = \sum_{k=0}^{\infty} P_{n,k}$ where $P_{n,k} \in \sigma(G_{n-k})$ and further $P_{n+f,k} = U^f P_{n,k}$

$$\langle G_{n-k}, P_{n,k} \rangle = \langle G_{-k}, P_0 \rangle = \langle G_{-k}, F_0 \rangle$$

 $\begin{array}{ll} (iii) & If \ S = \left\langle G_0, G_0 \right\rangle \ is \ invertible, \ then \ P_{n,k} = G_{n-k}A_k \ where \ A_k \in B(K) \ and \ is \\ & independent \ of \ n. \ Moreover, \\ & SA_k = \left\langle G_{-k}, P_0 \right\rangle = \left\langle G_{-k}, F_0 \right\rangle, \qquad A_0 = I; \\ (iv) & \left\{ Q_n \right\}_{-\infty}^{+\infty} \ is \ purely \ deterministic \ and \ \sigma(Q_n)_{-\infty}^k = M_{-\infty} \ for \ each \ k. \end{array}$

Proof.

(i) Since $G_m \perp G_n$ if $m \neq n$, it is obvious that $M_{-\infty} \perp N_n$ and $M_n = M_{-\infty} \oplus N_n$. Therefore by (9), we have

$$F_n = (F_n \mid M_n) = (F_n \mid M_{-\infty} \oplus N_n)$$
$$= (F_n \mid N_n) + (F_n \mid M_{-\infty})$$
$$= P_n + Q_n$$

say evidently $P_n \perp Q_n$ proving (i).

(ii) Since $P_n \in N_n$ by its definition and since $N_n = \sigma(G_k)_{-\infty}^n$, we may apply the Theorem 1(e) to get

$$P_n = \sum_{k=0}^{\infty} P_{n,k}, \qquad P_{n,k} \in \sigma(G_{n-k}),$$

further by the same theorem,

$$G_{n-k}, P_{n,k} \rangle = \langle G_{n-k}, P_n \rangle$$
$$= \langle G_{n-k}, P_n + Q_n \rangle$$
$$= \langle G_{n-k}, F_n \rangle$$
$$= \langle G_{-k}, F_0 \rangle$$

since $G_{n-k} \perp Q_n$ by stationarity. $P_{n+f,k} = U^f P_{n,k}$ is a clear consequence of stationarity. (iii) follows by an identical argument from Theorem 1(e) bearing in mind that *S* is invertible.

(iv) is obvious since $Q_n \in M_{-\infty}$ for all *n* by definition. See (i) above.

Following Kolmogorov [2] we call the process $\{F_n\}_{-\infty}^{+\infty}$ regular if $(F_0 | M_{-n}) \to 0$ when $n \to \infty$.

Using arguments similar to [6], we can now given the following theorem:

Theorem 3. The following statements about $\{F_n\}_{-\infty}^{+\infty}$ are equivalent:

- (i) $\{F_n\}_{-\infty}^{+\infty}$ is regular;
- (ii) There exists an orthogonal process $\{H_n\}_{-\infty}^{+\infty}$ such that $\langle H_m, H_n \rangle = \delta_{mn}T$ and further,

$$F_n = \sum_{k=0}^{\infty} F_{n,k}$$
with $F_{n,k} \in \sigma(H_{n-k})$ and $U^j F_{n,k} = F_{n+j,k}$.
(iii) $M_{-\infty} = \{0\}$.

REFERENCES

- 1. Helson H. and Lowdenslager D., *Prediction theory and Fourier series in several variables*, II, Acta Math. (106) 1961, 175-213.
- Kolmogorov A., Stationary sequences in Hilbert space, Bull. Math. Univ. Moscow, (2) 1941.
- 3. Masani P., *The prediction theory of multivariate stochastic processes*, III, Acta. Math., (104) 1960, 141-162.
- 4. Segal I. E., *Tensor algebras over Hilbert spaces*, I, Trans. Amer. Math. Soc., (81) 1956, 106-134.
- 5. Sz.-Nagy B. and Foias C., *Harmonic Analysis of Operators on Hilbert space*, Acad. Kiado, Budapest, North Holland Company-Amsterdam, London, 1970.
- 6. Wiener N. and Masani P., *The prediction theory of multivariate stochastic processes*, II, Acta Math., (99) 1958, 99-139.
- 7. Wold H., A study in the analysis of stationary time series, Stockholm, 2nd ed., 1954.