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Abstract:

In this paper we develop the correlation theory of a stationary process of
distribution and culminating in the now classical Wold decomposition theorem. The
fundamental notion of correlation theory of a stationary process of distribution such
as distribution, sequence of distribution, normal and orthogonal process, process of
innovation, deterministic are define in this context.
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Preliminaries

K will stand for a separable complex Hilbert space. Let (€2,B,P) be a probability
space. We write K’ for the complex Hilbert space L?(Q, B,P). The inner products in
K, K’ will be denoted booth by (.,.) the risk of confusion being hereby small.

Definition 1. A distribution on K is a continuous linear map from K toK’.

In this paper familiar mathematical object is given a new name. One reason is that for
some purposes it is useful to consider certain equivalence classes of distribution [4], and
in doing this the structure of the probability space underlying K’ is used more crucially
than we have indicated.

Definition 2. Let F,G be the distribution on K. For y,z € K consider the continuous
conjugate bilinear functional (Fy,Gz). By the Riesz theorem there is a bounded
operator (G,F):K — K such that (Fy,Gz)=((G,F)y,z). We call (G,F) the
Gramian of F,G.

It is clear that (G, F) :<F,G>* and that (F,F) is a non-negative operator.

Definition 3. Let {F, }"” be a sequence of distribution. We say
(@ FLFRif(RF)=0;

(b)  Fisnormalif (F,F)=1;

+00

(c)  Thesequence {F,}"” is orthogonal if i= j = F, L F;;

0

(d)  The sequence is orthonormal if (F;, F;) = 5;1 .

Definition 4. By D we shall denote the set of all distributions, endowed with the
normal topology of the space of continuous linear maps K — K'.

Definition 5. (i) A linear manifold in D is a non-void subset M < D such that if
F.F,eM, A A €B(K) than FA +F,A,eM .
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Definition 6. o (F,)" will stand for the minimal subspace containing {F}
Definition 7. If (M)

(i) A subspace of D is a closed linear manifold.

+00

is a family of subspaces of D, then by Z M, we mean the set
jed

jed

of all sums ZFJ. which conserve in D with Fj IS Mj.

jed

Using the above definitions, we can now check the following properties.
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Let F,,G, €D, A,B, €B(K), j,k=1..,n. Then

<ZGkBk,ZFjAj> =3y B;<Gk, |:J.>Ak .
k=1 = k=l j=1

If F,.GeD then F LG if and only if (Fe,Ge)=0 where (g),” is a
complete orthonormal set in K.

{Fj}jeJ is an orthonormal set in D if and only if the set

{Fjek | jeJd,k =1,2,...} is an orthonormal set in K', (g;),” being as in (2).
Let {F,}” be asequence in D such that (F,,F,)=5,,T, where T, is a non-

m!’n mn-'n

negative operator in B(K) for each n. If T, is invertible in B(K) for each

n, then F,T % is an orthonormal sequence in D.
M < D is a closed subspace of D if and only if there is a closed subspace
M’ of K" suchthat M ={F | F € D, and Fxe M’ foreach x e K}. We call

this subspace M’ the subspace associated with M .
Let M be a closed subspace of D and F € D. Then there is a unique

element (F|M) of M such that (G,F—(F|M))=0 for each GeM .
(F|M) shall be called the orthogonal projection of F on M. In fact, if
xe K, (F|M)x=PR,Fx where P, is the orthogonal projection on M’ in
K'.
Let M, N be the subspaces of D with M < N, then clearly M" < N’. Then
there is a unique subspace NOM of D such that M @ (N®M)=N and
M L (N®M). Infact N®M is the unique subspace of D whose associated
subspace is N'©OM', the orthogonal complement of M’ in N'.
Let M be asubspaceof D and FeD.If Ge M then we have

(F=(FIM),F-(FIM))<(F-G,F-G)
where A < B means that B — A is non-negative.
If M,N are the subspaces of D such that M L N then M@N is a
subspace of D and if F € D then

(FIM+N)=(F|M)+(F|N).
If M,N are the subspaces of D suchthat M c N and if F € D then
((FIM),(FIM))<{(FIN),(F|N)).

If M,k=0,£1£2,... are subspaces of D such that M, o M,,, and if

M =M, thenif F € D, we have

(FIM)=]im(FIM,).

K—>+0
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The Wold decomposition

Let {F.}" be a stationary sequence of distributions on K. We set M’ the closure in
K’ of the union of the ranges of {F,;n=0,+1 +2,...} and call this the universe of our
process. It is clearly a separable subspace of K’ and is easily seen to be the associated
subspace of the subspace o(F,)": of D.
We define an operator U on elements of M/, of the form
N M

2 2 ke

j=N k=—M
where N, M are integers and the e, are arbitrary elements of K by

(12) U(ZN: iaijjeka ZN: iaijMek.

j=—N k=-M j=—N k=—M
U clearly maps the linear manifold of elements of M of the above form onto itself in

+00

a one-one manner. Further , the assumption that {F,}" is stationary shows, after an
easy computation, that U preserves inner products. Since elements of the form above
are dense in M’ , U can be extended to a unitary operator on K’ which maps M onto

itself. While that is true that the extension is not unique, any two extension have clearly
the same restriction to M . From now on we can and do assume that K'=M so that

U is uniquely defined on K'. U is called the shift operator of the process.

Let us write
Mk :G(Fn)ﬁw’ M—w :ﬂMk

and call these subspaces of D “the universe of the process up to time k” and
respectively “the remote past of the process™. It is easy to see that
U™, =M,,,
U (F; IM) = (Fp. M)
Definition 8. The process of distribution {G, " defined by
G, =F-(FIM.)

is called the process of innovation of F.. It is clear that {G,}

—00

+00

is stationary,
G, =U"G, and further that <Gm,Gn>:5mnS, where S is a non-negative operator
independent of n.

Definition 9. {F, }'” is said to be purely deterministic if G, =0 for all n. If not we call
non-deterministic.

The operator S =(G,,G,) will be called the prediction error operator of {F.}7 1tis

a bounded non-negative operator and is zero if and only if {Fn}fz is purely
deterministic.

Definition 10. We say that {F,}” has nearly full rank if S has trivial null space and it
is said to have full rank if S admits bounded inverse.
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The following theorem is preliminary to the Wold decomposition.

Theorem 1. Let {G, | e D such that (G, G,) = 6,,S where S =0 B(K). Then
(a) o(G,)) La(G,) if n=m;

(o) fH=>H, K=>K, eDwith H K, €c(G,), then

n=—0

+00

(H.K)= 2 (Hu Ky)

n=—o0

©  >o(G,)=0(G,)7;
(d) If S is invertible, then every element of o(G,) is of the form G, A with

AeB(K);
(e If K e D, then there exist K, € o(G,) such that

(K10(G,))= S K, and (G, K)=(G, K,).

Further, if S is invertible then there exist A, € B(K) such that K, =G A, and
(G, K)=SA,.

Theorem 2. (Wold decomposition) Let {Fn }fz be a stationary process in D and let
{G,}'” be its innovation process. Let M, N, be the universes up to time n of {F,}'”
and respectively {G, }". Then we have
(1) F,=P,+Q, where P,=(F,|N,), Q,=(F,|M_,), P, LQ, for each
n;
i) P,=3P, where P,, c(G, ) and further

k=0

Pn+f k= u' Pn,k

<Gn—k’ Pn,k> = <G—k’ Po> = <G—k’ Fo>
(i) If S=(G,,G,) is invertible, then P, =G, A where A eB(K) and is
independent of n. Moreover,
SAk=<Gfk,PO>=<Gfk,FO>, A=1;
(iv)  {Q,}” is purely deterministic and o(Q,)*, =M _ for each k.

00

Proof.
(i) Since G, LG, if m=n, it is obvious that M_, LN, and M, =M__ @ N,.

Therefore by (9), we have
I:n :(Fn | Mn):(Fn | M—oo G_)Nn)

=(FR IN)+(F M)
=P +Q,
say evidently P, L Q, proving (i).
(i) Since P, e N, by its definition and since N,=0(G,)",, we may apply the
Theorem 1(e) to get
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further by the same theorem,

since G, L Q, by stationarity. P,.,, =U 'P,, is a clear consequence of stationarity.

(iii) follows by an identical argument from Theorem 1(e) bearing in mind that S is
invertible.
(iv) is obvious since Q, € M _ for all n by definition. See (i) above.

+00

Following Kolmogorov [2] we call the process {Fn }_oo regular if (F,|M_,)—>0

when n — oo,
Using arguments similar to [6], we can now given the following theorem:

Theorem 3. The following statements about {F, | are equivalent:
i  {F}” isregular;
(i) There exists an orthogonal process {H, | such that (H ,H,)=0,,T
and further,

Fn = i Fn,k

k=0
with F,, eo(H,,) and U'F,, = Foi
i)  M_, ={o}.
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