
 379

 
STATIONARY SEQUENCES OF DISTRIBUTION  

ON HILBERT SPACE 
 
 

Ramona VASIU 
ROMANIAN-GERMAN UNIVERSITY OF SIBIU 

 
Abstract:   
In this paper we develop the correlation theory of a stationary process of 
distribution and culminating in the now classical Wold decomposition theorem. The 
fundamental notion of correlation theory of a stationary process of distribution such 
as distribution, sequence of distribution, normal and orthogonal process,  process of 
innovation, deterministic  are define in this context. 
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Preliminaries 
 

K  will stand for a separable complex Hilbert space. Let ),,( PBΩ  be a probability 
space. We write K ′  for the complex Hilbert space ),,(2 PBL Ω . The inner products in 

KK ′,  will be denoted booth by ( ).,.  the risk of confusion being hereby small. 
 
Definition 1. A distribution on K  is a continuous linear map from K  to K ′ . 
 
In this paper familiar mathematical object is given a new name. One reason is that for 
some purposes it is useful to consider certain equivalence classes of distribution [4], and 
in doing this the structure of the probability space underlying Κ′  is used more crucially 
than we have indicated.  
 
Definition 2. Let GF ,  be the distribution on Κ . For Kzy ∈,  consider the continuous 
conjugate bilinear functional ( )GzFy, . By the Riesz theorem there is a bounded 
operator KKFG →:,  such that ),,(),( zyFGGzFy = . We call FG,  the 
Gramian of GF , . 

It is clear that *,, GFFG =  and that FF ,  is a non-negative operator. 
 
Definition 3. Let { }+∞∞−nF  be a sequence of distribution. We say 
 (a) ii FF ⊥  if 0, =ii FF ; 

 (b) iF  is normal if IFF ii =, ; 

 (c) The sequence { }+∞∞−nF  is orthogonal if ji FFji ⊥⇒≠ ; 

 (d) The sequence is orthonormal if IFF ijji δ=, . 
Definition 4. By D  we shall denote the set of all distributions, endowed with the 
normal topology of the space of continuous linear maps KK ′→ . 
 
Definition 5. (i) A linear manifold in D  is a non-void subset DM ⊂  such that if 

MFF ∈21, , )(, 21 KBAA ∈  than MAFAF ∈+ 2211 . 
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  (ii) A subspace of D  is a closed linear manifold. 
 
Definition 6. +∞

∞−)( nFσ  will stand for the minimal subspace containing { }+∞∞−nF . 
Definition 7. If JjjM ∈)(  is a family of subspaces of D , then by ∑

∈Jj
jM  we mean the set 

of all sums ∑
∈Jj

jF  which conserve in D  with jj MF ∈ . 

 
 Using the above definitions, we can now check the following properties. 

(1) Let DGF kj ∈, , )(, KBBA kj ∈ , nkj ,...,1, = . Then 

∑∑∑ ∑
= == =
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(2) If DGF ∈,  then GF ⊥  if and only if 0),( =ii GeFe  where +∞
1)( ie  is a 

complete orthonormal set in K . 
(3) { }

JjjF
∈

 is an orthonormal set in D  if and only if the set 

{ },...2,1,| =∈ kJjeF kj  is an orthonormal set in K ′ , +∞
1)( ie  being as in (2). 

(4) Let { }+∞∞−nF  be a sequence in D  such that nmnnm TFF δ=,  where nT  is a non-
negative operator in )(KB  for each n . If nT  is invertible in )(KB  for each 
n , then 2/1−

nnTF  is an orthonormal sequence in D . 
(5) DM ⊂  is a closed subspace of D  if and only if there is a closed subspace 

M ′  of K ′  such that { }KxeachforMFxandDFFM ∈′∈∈= ,| . We call 
this subspace M ′  the subspace associated with M . 

(6) Let M  be a closed subspace of D  and DF ∈ . Then there is a unique 
element )|( MF  of M  such that 0)|(, =− MFFG  for each MG∈ . 

)|( MF  shall be called the orthogonal projection of F  on M . In fact, if 
Kx∈ , FxPxMF M ′=)|(  where MP ′  is the orthogonal projection on M ′  in 

K ′ . 
(7) Let NM ,  be the subspaces of D  with NM ⊂ , then clearly NM ′⊂′ . Then 

there is a unique subspace MNΘ  of D  such that NMNM =Θ⊕ )(  and 
)( MNM Θ⊥ . In fact MNΘ  is the unique subspace of D  whose associated 

subspace is MN ′Θ′ , the orthogonal complement of M ′  in N ′ . 
(8) Let M  be a subspace of D  and DF ∈ . If MG∈  then we have  

GFGFMFFMFF −−−− ,)|(),|( p  
where BA p  means that AB −  is non-negative. 

(9) If NM ,  are the subspaces of D  such that NM ⊥  then NM ⊕  is a 
subspace of D  and if DF ∈  then  

)|()|()|( NFMFNMF +=+ . 
(10) If NM ,  are the subspaces of D  such that NM ⊂  and if DF ∈  then 

)|(),|()|(),|( NFNFMFMF p . 
(11) If ...,2,1,0 ±±=kM k  are subspaces of D  such that 1+⊃ kk MM  and if 

kMM I
+∞

∞−

=  then if DF ∈ , we have 

)|()|( lim k
k

MFMF
+∞→

= . 
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The Wold decomposition 
 
Let { }+∞∞−nF  be a stationary sequence of distributions on K . We set ∞′M  the closure in 
K ′  of the union of the ranges of { }K,2,1,0; ±±=nFn  and call this the universe of our 
process. It is clearly a separable subspace of  K ′  and is easily seen to be the associated 
subspace of the subspace +∞

∞−)( nFσ  of D . 
 We define an operator U  on elements of ∞′M  of the form 

∑ ∑
−= −=

N

Nj

M

Mk
kjjk eFa , 

where MN ,  are integers and the ke  are arbitrary elements of K  by 

(12)   ∑ ∑∑ ∑
−= −=

+
−= −=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ N
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Mk
kjjk

N

Nj

M

Mk
kjjk eFaeFaU 1 . 

U  clearly maps the linear manifold of elements of ∞′M  of the above form onto itself in 
a one-one manner. Further , the assumption that { }+∞∞−nF  is stationary shows, after an 
easy computation, that U  preserves inner products. Since elements of the form above 
are dense in ∞′M , U  can be extended to a unitary operator on K ′  which maps ∞′M  onto 
itself. While that is true that the extension is not unique, any two extension have clearly 
the same restriction to ∞′M . From now on we can and do assume that ∞′=′ MK  so that 
U  is uniquely defined on K ′ . U  is called the shift operator of the process. 
 
 Let us write 

k
nk FM ∞−= )(σ , kMM I

+∞

∞−
∞− =  

and call these subspaces of D  “the universe of the process up to time k ” and 
respectively “the remote past of the process”. It is easy to see that 

)|()|( nknjkj
n

nkk
n

MFMFU

MMU

++

+

=

=
 

Definition 8. The process of distribution { }+∞∞−nG  defined by 
)|( 1−−= nnnn MFFG  

is called the process of innovation of nF . It is clear that { }+∞∞−nG  is stationary, 

0GUG n
n =  and further that SGG mnnm δ=, , where S  is a non-negative operator 

independent of n . 
 
Definition 9. { }+∞∞−nF  is said to be purely deterministic if 0=nG  for all n . If not we call 
non-deterministic. 
 
The operator nn GGS ,=  will be called the prediction error operator of { }+∞∞−nF . It is 

a bounded non-negative operator and is zero if and only if { }+∞∞−nF  is purely 
deterministic. 
 
Definition 10. We say that { }+∞∞−nF  has nearly full rank if S  has trivial null space and it 
is said to have full rank if S  admits bounded inverse. 
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The following theorem is preliminary to the Wold decomposition. 
 
Theorem 1. Let { } DGn ∈+∞

∞−  such that SGG mnnm δ=,  where )(0 KBS ∈≠ . Then 

 (a) )()( mn GG σσ ⊥  if mn ≠ ; 

 (b) If ∑ ∑
+∞

−∞=

+∞

−∞=

∈==
n n

nn DKKHH ,  with )(, nnn GKH σ∈ , then  

  ∑
+∞

−∞=

=
n

nn KHKH ,, ; 

 (c) ∑
+∞

∞−

∞+
∞−= )()( nn GG σσ ; 

 (d) If S  is invertible, then every element of )( nGσ  is of the form AGn  with 
  )(KBA∈ ; 
 (e) If DK ∈ , then there exist )( nn GK σ∈  such that 

( ) ∑
+∞

−∞=

∞+
∞− =

n
nn KGK )(|σ  and nnn KGKG ,, = . 

Further, if S  is invertible then there exist )(KBAn ∈  such that nnn AGK =  and 

nn SAKG =, . 
 
Theorem 2. (Wold decomposition) Let { }+∞∞−nF  be a stationary process in D  and let 

{ }+∞∞−nG  be its innovation process. Let nn NM ,  be the universes up to time n  of { }+∞∞−nF  

and respectively { }+∞∞−nG . Then we have 
 (i) nnn QPF +=  where )|( nnn NFP = , )|( ∞−= MFQ nn , nn QP ⊥  for each 
  n ; 

 (ii) ∑
∞

=

=
0

,
k

knn PP  where )(, knkn GP −∈σ  and further 

00,

,,

,,, FGPGPG

PUP

kkknkn

kn
f

kfn

−−−

+

==

=
 

(iii) If 00 ,GGS =  is invertible, then kknkn AGP −=,  where )(KBAk ∈  and is 
  independent of n . Moreover, 

IAFGPGSA kkk === −− 000 ,,, ; 

(iv) { }+∞∞−nQ  is purely deterministic and ∞−∞− = MQ k
n )(σ  for each k . 

 
Proof.  
(i) Since nm GG ⊥  if nm ≠ , it is obvious that nNM ⊥∞−  and nn NMM ⊕= ∞− . 
Therefore by (9), we have  

nn

nnn

nnnnn

QP
MFNF

NMFMFF

+=
+=

⊕==

∞−

∞−

)|()|(
)|()|(

 

say evidently nn QP ⊥  proving (i). 
(ii) Since nn NP ∈  by its definition and since n

kn GN ∞−= )(σ , we may apply the 
Theorem 1(e) to get 
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further by the same theorem, 
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since nkn QG ⊥−  by stationarity. kn
f

kfn PUP ,, =+  is a clear consequence of stationarity. 
(iii)  follows by an identical argument from Theorem 1(e) bearing in mind that S  is 
invertible. 
(iv) is obvious since ∞−∈MQn  for all n  by definition. See (i) above. 
 
 Following Kolmogorov [2] we call the process { }+∞∞−nF  regular if 0)|( 0 →−nMF  
when ∞→n . 
 Using arguments similar to [6], we can now given the following theorem: 
 
Theorem 3. The following statements about { }+∞∞−nF  are equivalent: 

 (i) { }+∞∞−nF  is regular; 

 (ii) There exists an orthogonal process { }+∞∞−nH  such that THH mnnm δ=,  
  and further, 

∑
∞

=

=
0

,
k

knn FF  

  with )(, knkn HF −∈σ  and kjnkn
j FFU ,, += . 

 (iii) { }0=∞−M . 
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