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Abstract:

In this paper we present a prediction theory of an infinite process considered as
time-evolution in the state space of a correlated action. We introduce the notion of a
correlated action and construct its measuring space as an Aronszajn reproducing
kernel Hilbert space. The fundamental notion of prediction theory such as stationary
process, deterministic, white-noise and moving average processes are define in this
context.
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Complete correlated actions

Let us consider the triplet {EHF} where E is a separable Hilbert space, H is
aright L(E) -module, and T": HxH — L(E) verifies the following properties:
i) T'[h,h]>0,T[h,h]=0=h=0,
ii) r[hl, hz]* = r[hZ’hl]’

iii)F[ZAihi’Zngj]:ZAi*F[hi’gj]Bj .

In (iii) one considered finite sums, and Ah is in the meaning of L(E)-module
H. The map L(E)xH — H defined by
1) (A,h)—> Ah
is called the action of L(E) onto the state space H. The separable Hilbert space E is
called the parameter space and the map HxH — L(E) given by
2) (h,g)—>TTh,g]
is called the correlation of the action of L(E) onto H.

Such a triplet {E,H, T’} is called a correlated action of L(E) onto H.

A simple example of correlated action can be constructed as follows. Let E,H
be two separable Hilbert spaces and H = L(E,K). H becomes a right L(E)- module if
we consider for A € L(E) and V € L(E,K)

(3) AV =VA

where VA is the usual composition of operators. We take the action of L(E) onto H,
I':HxH — L(E) defined by

(4) V1.V, ] :V1*V2 '

Clearly T' satisfies the properties (i) — (iii) and we obtain that {E,H,F}is a correlated

action which is also called the operator model. As we shall now in the following
theorem, any abstract correlated action can be imbedded into one of this type.
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Theorem 1. Let {E,H, T’} be a correlated action. There exist a Hilbert space K and an
algebraic imbedding h —V, of the right L(E) - module H into the right L(E) - module
L(E,K) with the properties

®) I'Th, h,] =Vh:Vh2 (h,h, € H).
The elements of the form
(6) Y(ah =V,a,

where ae E and h e H span a dense subspace in K .
This imbedding is unique up to a unitary equivalence.

Proof. Let A=ExH and y,,, be the complex valued function defined on A by

(7) V@m0, 9) =(C[g,h]a,b).
On the linear span of these function we define the sesquilinear form as follows.
Consider

(8) <Zci7/(a,,h,)izdjy(bj,gj)>:Zcidj(r[gjihi]ai'bj)'

i j ij
Forany a,,...,a, € E, choose acE and A; € L(E) suchthat A;a=a;.
For h,,....h, € H we have

<Zci7(ai,hi)vZCjV(aj,hj)> ZC (r[hpu &, j) =

E

—ZCICJ(F[hJ, h]Aa, Aa) Zc,cJ(Ar[hJ, h]Aa, a) =

E

[1‘[20J ; J,ZcAlh]a a] >0.

Such a way <> is a sesquilinear semi-positive definite form. The Hilbert space K
follows in the usual way by this form. In fact K is the Aronsazjn reproducing kernel
Hilbert space [1], [4].

Forany heH we define
9) Via=¥gan aeE.
We obtain a linear bounded operator V from E into K. Indeed we have

2
Vial" =[] = (TTh, hJa,2) <[rTh, hil-fal"
Forany h,h, eH and a,b e E we have
(I'lhy, h,]a,b) = <7(a,hz) , y(a,hl)> = <Vh2aivh1a> = (Vhtvhza’ a).

Therefore the property (5) is verified. The property (6) and the fact that the

elements of the form y., =V,a span a dense subspace in K, result from the

construction of the Hilbert space K .
If we have another imbedding of H into L(E,K) with the properties (5) and (6),

let us denote it by h —V,,, then putting
(10) XV,a=V,a
we obtain a unitary operator X :K'— K such that XV, =V, .

That finished the proof.
The uniquely attached Hilbert space K to a correlated action {EHF} is called
the measuring space of the correlated action.
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We say that a correlated action {EKF} is a complete correlated action if the
map h —V, of H into L(E,K) is surjective.

Stationary processes in complete correlated actions

By a I'- stationary process in the correlated action {EHF} we mean a
sequence {fn}f‘z of elements in H such that I'[f., f_] depends only on the difference

m-n and not on m and n separately. Concerning a I" - stationary process {fn}f:'; we

consider the following subspace of the measuring space of the correlated action
{E,H,T}:

(11) KM= \n/van,
(12) K! =V, E.
If we consider the linear manifold -
(13) ng{heH;h=ZAkfk,AkeL(E)}
then (11) can be expressed as -
(14) K!=\ VE.

Let {f,}" and {g,}” be two I - stationary processes. We say that {f | and
{gn }fi are cross-correlated if I'[f,, g,,] depends only on the difference m—n.

Theorem 2. For any I - stationary processes {f,}" there exists a unitary operator U
on K! such that
(15) Ve =UV, .

+o0

The stationary processes {g,}” is stationary cross-correlated with {f, | if

there exists a unitary operator U, on K =K! vK¢ such that

U,=Ug,|K, and U 6=U_.|K?.
Proof. It is enough to define U, on the generators of K by

U,vV,a=V, a.
Then U, define a unitary operator on K! which verifies (15).
Let {f.}'” and {g,}"” be two I - stationary cross-correlated processes and U

and U, as above. If we put
(16) U,(V,a+V, b)=V, a+V, b,

then we have

2 ‘ 2

2
HU o (Vi,a +ngb)H = ”mea Vo 0 =70 * 7000

= (F[ fn+l’ fn+1]a’ a) + (F[gm+l’ gm+1]b' b) + 2 Re(r[ fn+1’ gm+1]a’ b) =
= (I'Tf,. f,]a,a) + (I'Tg,,, 9,,]b.b) + 2Re(I'[f,, g, ]a,b) =

=...=V\/fna+vgmb“2
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It results that (16) defines unitary operator U, which verifies the requested

properties.
This finished the proof.
The unitary operator U, is called the shift operator attached to the stationary

processes {f }" and U, the extended shift of the I'- stationary cross-correlated

~+00

processes {f, | and {g,}"

In what follows, for a T - stationary processes {f,}'* we write V, for Vv, , and
by (15) we have

K! =\ U{V,E.
It is easy to verify that the map n—TI,(n)=I[f,, f,] is a L(E)- valued

positive definite function on the group Z. This function is called the cross-correlation
function, or the correlation function of the T - stationary processes {f,}". Also, for the

+00

cross-correlated T - stationary processes {f }'* and {g,}
correlation function defined by n — T' (n) =TTf,,9,..].

there exists the cross-

00

Now we give some definition concerning the T"- stationary process {gn}fz is
called white noise process, provided I'[g,,d,]=0 for n=m.

00

We say that T'- stationary process {f, }~

{9,177 if
(17) (i)  {g,}” is stationary cross-correlated with {f,}" and
If,,9,]=0 for m>n;
(i) V,EcKg;
(i) ReTl[f —g.,g.]>0.

~+00

contains the white noise process

The T - stationary process {f,}™ is called deterministic if it contains no non-
zero white noise process.

The I - stationary process {fn},w is called a moving average of a white noise
{g,)7 if {f,}" contains {g,}”; and K% =K.

—00

+00

00

Theorem 3. (Wold decomposition) The I'- stationary process {fn};

decomposition of the form
(18) f,=u, +v,,

where {u,}'” is a moving average of a white noise process {g,}"” contained in {f,}

admits a unique

+00

{v,}"* is a deterministic process and
(19) I'u,,v,]=0 nmeZ.

4

“* is the maximal white noise process contained in {f, }"

0

The white noise {g, }

0"

Proof. If we write
(20) K, =yUV(E,
0

then K, =K and K =U"K . Putting
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(21) U, =U; K,
then U, is an isometric operator on K, and we can consider its Wold decomposition
(22) K,=M_(F)®%R,
where F =K OU,K,, M (F)=@U/F and R = UK, .
0

n>0

Let P be the orthogonal projection of K, onto M, (F) and P. be the
orthogonal projection of K, onto the wandering subspace F . Using the imbedding
h—V, of H into L(E,K) and we can consider
(23) f.=UV,.
If we put u, =U{PV,, v, =U7(I -P)V, and g,=U{P.V,, then (18) is obvious and
we have

Iu,,v,] =Vf*PU (1 =P)V, =Vf*U f"P(I -P)V, =0.

Hence (19) is verified.

Because
F[gn,gm]:V:PFU [lefrlvaf =0, n=m,

it results that {gn}f‘” is a white noise process. The I'- stationary white noise process

0

{9, 1 is contained in {u, }"*. Indeed, we have:

+00

(i)  {g,/” is TI- stationary cross-correlated with {u,}"
Iu,,g,]=V;/PU"P.V, =0 for m>n;
(i) V,E=P.V,EcPV,EcK!;

("I) 1_‘[un - gnlgn]: 1_‘[unlgn]_r‘[gnlgn]:Vf*Pl:’FVf _Vf*Pva = 0 :

+00

and

0

Therefore (17) are verified and {g, | is a white noise contained in {u, }
Since we clearly have
(24) K3 =K, =M(F)

+00

—0 "

~+00

it follows that the process {u, }'” is a moving average of the white noise {g, }

—o0 —o0 "

~+00

To see that the white noise {gn}f is also contained in the T - stationary process

00

{f.], we have forany acE and m > n
(I f,,9,]a,a)=(V,U"P.V a,a) = (P.V,a,U""V,a) =0.
Also we have V.E =P.V,Ec K] and
I[f, - 9,.9,1=TTf,,9,1-T19,,9,1=VPV, -V/PYV, =0.
Hence (17) are again satisfied.
Let {g; | be another white noise process contained in {f, }™. We shall see that
{9/} is contained in {g, }” too. Firstly we see that

n

(25) V,EcF.
Indeed, for any a,a, € E we have
(Vg’a"U :mb\/f an)K = (Vf*U ;Hlvg’a" an)K = (F[ fO’ gr'wl]a’ a'n)E =0

4

because {g/ |~

“ is contained in {f, |~

—0 "
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Using (25) and the fact that {g/}" is contained in {f,}" it follows that (17) are

n

+00

verified, therefore {g! }'* is contained in {g,}'”, i.e. {g,}” is the maximal white noise

contained in {f,}".

To see that {v,}'” is a deterministic process is sufficient to consider a white

+00

noise process {l}"

+00

contained in {v,}. Then it is easy to verify that {I " is

—00

contained in {f,}"* and by the maximality of {g,}'* in {f }'* it follows that {I. " is

0 0

00

contained in {g, }"”. We have than
1—‘[gn’ln] :Vf*PFVI :Vf*PF(I - P)VI =0
and
1_‘[In’ln] =Re 1—‘[gniln]_ Re 1—‘[gn - In'ln] < O’
which implies that |, =0.
If we consider
(26) f=u +v
another decomposition of the form (18) and (19), where {u’ }

™ is a moving average of

—o0

—+00

the white noise {g;}" contained in {f, }", then by the maximality of {g,}'” it follows

—00

that {g/}"” is contained in {g,}” and it is easy follows that

n

(27) V,EcF.

We shall see that in fact we have V,E=F .
From (26) we have

(28) V, =V, 4V,
and
(29) K!=K"@®K".

Let us denote by F, = FOV,E and g, =U[P.V, . Itis easy to see that {q, |7 is

a white noise process contained in {fn}fz and using the fact that V,E L K} and (29) we

~+00

can verify that the relation (17) concerning {v/ . Therefore {q,}" is a white noise

—00

contained in the deterministic process {v/}'”, ie. q,=0. Hence F, ={0} and
consequently V,E = F . We obtain therefore that KY =K¢ =M (F), K¥ =% and by
(28), (29) it follows that V,, = PV, . So we have u’=u and v’ =v.

The proof of the theorem is finished.
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