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Abstract: 
In this paper we present a prediction theory of an infinite process considered as 
time-evolution in the state space of a correlated action. We introduce the notion of a 
correlated action and construct its measuring space as an Aronszajn reproducing 
kernel Hilbert space. The fundamental notion of prediction theory such as stationary 
process, deterministic, white-noise and moving average processes are define in this 
context. 
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Complete correlated actions 
 
 

 Let us consider the triplet { }ΓΗΕ ,, , where Ε  is a separable Hilbert space, Η  is 
a right )(ΕL -module, and )(: Ε→Η×ΗΓ L  verifies the following properties: 

i) 00],[,0],[ =⇒=Γ≥Γ hhhhh , 
ii) ],[][ 12

*
2,1 hhhh Γ=Γ , 

iii) ∑∑ ∑ Γ=Γ
ji

jjii
i j

jjii BghAgBhA
,

* ],[],[ . 

 
 In (iii) one considered finite sums, and hΑ  is in the meaning of )(ΕL -module 
Η . The map Η→Η×Ε)(L defined by 
(1)      ( ) hh Α→Α,  
is called the action of )(ΕL  onto the state space Η . The separable Hilbert space Ε  is 
called the parameter space and the map )(Ε→Η×Η L  given by  
(2)      ( ) ],[, ghgh Γ→  
is called the correlation of the action of )(ΕL  onto Η . 
 Such a triplet { }ΓΗΕ ,,  is called a correlated action of )(ΕL  onto Η . 
 A simple example of correlated action can be constructed as follows. Let ΗΕ,  
be two separable Hilbert spaces and ),( ΚΕ=Η L . Η  becomes a right )(ΕL - module if 
we consider for )(Ε∈Α L  and ),( ΚΕ∈ LV   
(3)      Α=Α VV  
where ΑV  is the usual composition of operators. We take the action of )(ΕL  onto Η , 

)(: Ε→Η×ΗΓ L  defined by 
(4)      2

*
121 ],[ VVVV =Γ . 

Clearly Γ  satisfies the properties (i) – (iii) and we obtain that { }ΓΗΕ ,, is a correlated 
action which is also called the operator model. As we shall now in the following 
theorem, any abstract correlated action can be imbedded into one of this type. 
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Theorem 1. Let { }ΓΗΕ ,,  be a correlated action. There exist a Hilbert space Κ  and an 
algebraic imbedding hVh →  of the right )(ΕL - module Η  into the right )(ΕL - module 

),( ΚΕL  with the properties  
(5)      ).,(],[ 21

*
21 21

Η∈=Γ hhVVhh hh  
The elements of the form 
(6)    aVhha =),(γ , 
where Ε∈a  and Η∈h  span a dense subspace in Κ . 
 This imbedding is unique up to a unitary equivalence. 
 
Proof.  Let Η×Ε=Λ  and ),( haγ  be the complex valued function defined on Λ  by 
(7)    ΕΓ= ),],[(),(),( bahggbhaγ . 
 On the linear span of these function we define the sesquilinear form as follows. 
Consider 

(8)   ( )∑∑∑ Γ=
ji

jiijji
j

gbj
i

hai bahgdcdc
jjii

,
),(),( ,],[, γγ . 

For any Ε∈naa ,...,1 , choose Ε∈a  and )(Ε∈Α Lj  such that jj aa =Α . 
For Η∈nhh ,...,1  we have 
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Such a way .,.  is a sesquilinear semi-positive definite form. The Hilbert space Κ  
follows in the usual way by this form. In fact Κ  is the Aronsazjn reproducing kernel 
Hilbert space [1], [4]. 
 For any Η∈h  we define  
(9)     Ε∈= aaV hah ),(γ . 
We obtain a linear bounded operator V  from Ε  into Κ . Indeed we have 

22

),(
2 ],[),],[( ahhaahhaV hah ⋅Γ≤Γ== γ . 

 For any Η∈21, hh  and Ε∈ba,  we have 
),(,,),],[(

211212

*
),(),(21 aaVVaVaVbahh hhhhhaha ===Γ γγ . 

 Therefore the property (5) is verified. The property (6) and the fact that the 
elements of the form aVhha =),(γ  span a dense subspace in Κ , result from the 
construction of the Hilbert space Κ . 
 If we have another imbedding of Η  into ),( ΚΕL  with the properties (5) and (6), 
let us denote it by hVh ′→ , then putting 
(10)     aVaXV hh =′   
we obtain a unitary operator Κ→Κ′:X  such that hh VXV =′ . 
 That finished the proof. 
 The uniquely attached Hilbert space Κ  to a correlated action { }ΓΗΕ ,,  is called 
the measuring space of the correlated action. 
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 We say that a correlated action { }ΓΚΕ ,,  is a complete correlated action if the 
map hVh →  of Η  into ),( ΚΕL  is surjective. 
 
Stationary processes in complete correlated actions 
 
 By a Γ - stationary process in the correlated action { }ΓΗΕ ,,  we mean a 
sequence { }+∞∞−nf  of elements in Η  such that ],[ mn ffΓ  depends only on the difference 

nm −  and not on m  and n  separately. Concerning a Γ - stationary process { }+∞∞−nf  we 
consider the following subspace of the measuring space of the correlated action 
{ }ΓΗΕ ,, : 

(11)     Ε=Κ ∨
∞−

nf

n
f
n V , 

(12)     Ε=Κ ∨
+∞

∞−
∞ nf
f V . 

 If we consider the linear manifold 

(13)    
⎭
⎬
⎫

⎩
⎨
⎧

Ε∈=Η∈=Κ ∑
<nk

kkk
f
n LAfAhh )(,;  

then (11) can be expressed as  

(14)     Ε=Κ ∨
Κ∈

h
h

f
n V

f
n

. 

 Let { }+∞∞−nf  and { }+∞∞−ng  be two Γ - stationary processes. We say that { }+∞∞−nf  and 

{ }+∞∞−ng  are cross-correlated if ],[ mn gfΓ  depends only on the difference nm − . 
 
Theorem 2. For any Γ - stationary processes { }+∞∞−nf  there exists a unitary operator fU  

on f
∞Κ  such that 

(15)     
0f

n
ff VUV

n
= . 

 The stationary processes { }+∞∞−ng  is stationary cross-correlated with { }+∞∞−nf  if 
there exists a unitary operator fgU  on gffg

∞∞∞ Κ∨Κ=Κ  such that 
g

fgg
f

fgf UUandUU ∞∞ Κ=Κ= || . 

Proof.  It is enough to define fU  on the generators of f
∞Κ  by 

aVaVU
nn fff 1+

= . 

Then fU  define a unitary operator on f
∞Κ  which verifies (15). 

 Let { }+∞∞−nf  and { }+∞∞−ng  be two Γ - stationary cross-correlated processes and fU  
and gU  as above. If we put  
(16)    bVaVbVaVU

mnmn gfgffg 11
)(

++
+=+ , 

then we have  
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 It results that (16) defines unitary operator fgU  which verifies the requested 
properties. 
 This finished the proof. 
 The unitary operator fU  is called the shift operator attached to the stationary 

processes { }+∞∞−nf  and fgU  the extended shift of the Γ - stationary cross-correlated 

processes { }+∞∞−nf  and { }+∞∞−ng . 

 In what follows, for a Γ - stationary processes { }+∞∞−nf  we write fV  for 
0f

V , and 
by (15) we have 

Ε=Κ ∨
+∞

∞−
∞ f

n
f

f VU . 

 It is easy to verify that the map ],[)( 0 nf ffnn Γ=Γ→  is a )(ΕL - valued 
positive definite function on the group Ζ . This function is called the cross-correlation 
function, or the correlation function of the Γ - stationary processes { }+∞∞−nf . Also, for the 

cross-correlated Γ - stationary processes { }+∞∞−nf  and { }+∞∞−ng  there exists the cross-
correlation function defined by ],[)( nppfg gfnn +Γ=Γ→ . 

 Now we give some definition concerning the Γ - stationary process { }+∞∞−ng  is 
called white noise process, provided 0],[ =Γ mn gg  for mn ≠ . 

 We say that Γ - stationary process { }+∞∞−nf  contains the white noise process 

{ }+∞∞−ng  if: 

(17)  (i) { }+∞∞−ng  is stationary cross-correlated with { }+∞∞−nf  and  
   0],[ =Γ mn gf  for nm > ; 
  (ii) f

gV 0Κ⊂Ε ; 
  (iii) 0],[Re ≥−Γ nnn ggf . 

 The Γ - stationary process { }+∞∞−nf  is called deterministic if it contains no non-
zero white noise process. 
 The Γ - stationary process { }+∞∞−nf  is called a moving average of a white noise 

{ }+∞∞−ng  if { }+∞∞−nf  contains { }+∞∞−ng  and fg
∞∞ Κ=Κ . 

 
Theorem 3. (Wold decomposition) The Γ - stationary process { }+∞∞−nf  admits a unique 
decomposition of the form 
(18)     nnn vuf += , 

where { }+∞∞−nu  is a moving average of a white noise process { }+∞∞−ng  contained in { }+∞∞−nf , 

{ }+∞∞−nv  is a deterministic process and 
(19)     Ζ∈=Γ mnvu nn ,0],[ . 

 The white noise { }+∞∞−ng  is the maximal white noise process contained in { }+∞∞−nf . 
 
Proof.  If we write 

(20)     Ε=Κ ∨
+∞

+ f
n

f VU *

0
, 

then f
0Κ=Κ+  and fnf

n U 0Κ=Κ . Putting 
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(21)     ++ Κ= |*
fUU  

then +U  is an isometric operator on +Κ  and we can consider its Wold decomposition 
(22)    ℜ⊕=Κ ++ )(FM , 

where +++ ΚΘΚ= UF , FUFM n
+

∞

+ ⊕=
0

)(  and ++
≥

Κ=ℜ ∩ n

n
U

0
. 

 Let P  be the orthogonal projection of +Κ  onto )(FM +  and FP  be the 
orthogonal projection of +Κ  onto the wandering subspace F . Using the imbedding 

hVh →  of Η  into ),( ΚΕL  and we can consider 
(23)     f

n
fn VUf = . 

If we put f
n
fn PVUu = , f

n
fn VPIUv )( −=  and fF

n
fn VPUg = , then (18) is obvious and 

we have 
0)()(],[ ** =−=−=Γ −−

f
nm

fff
nm

ffnn VPIPUVVPIPUVvu . 
Hence (19) is verified. 
 Because 

,,0],[ * mnVPUPVgg fF
nm

fFfmn ≠==Γ −  

it results that { }+∞∞−ng  is a white noise process. The Γ - stationary white noise process 

{ }+∞∞−ng  is contained in { }+∞∞−nu . Indeed, we have: 

 (i) { }+∞∞−ng  is Γ - stationary cross-correlated with { }+∞∞−nu  and 
0],[ * ==Γ −

fF
nm

ffnn VPPUVgu  for nm > ; 

 (ii) u
ffFg PVVPV +Κ⊂Ε⊂Ε=Ε ; 

 (iii) 0],[],[],[ ** =−=Γ−Γ=−Γ fFffFfnnnnnnn VPVVPPVggguggu . 

 Therefore (17) are verified and { }+∞∞−ng  is a white noise contained in { }+∞∞−nu . 
 Since we clearly have 
(24)     )(FMug =Κ=Κ ∞∞  
it follows that the process { }+∞∞−nu  is a moving average of the white noise { }+∞∞−ng . 

 To see that the white noise { }+∞∞−ng  is also contained in the Γ - stationary process 

{ }+∞∞−nf , we have for any Ε∈a  and nm >  
0),(),(),],[( * ===Γ −

+
− aVUaVPaaVPUVaagf f

nm
fFfF

nm
ffnn . 

 Also we have f
fFg VPV +Κ⊂Ε=Ε  and 

0],[],[],[ 2** =−=Γ−Γ=−Γ fFffFfnnnnnnn VPVVPVgggfggf . 
Hence (17) are again satisfied. 
 Let { }+∞∞−′ng  be another white noise process contained in { }+∞∞−nf . We shall see that 

{ }+∞∞−′ng  is contained in { }+∞∞−ng  too. Firstly we see that 
(25)     FVg ⊂Ε′ . 
Indeed, for any Ε∈naa,  we have 

0),],[(),(),( 10
1*1* =′Γ== Ε+Κ′
+

Κ
+

′ nnng
n
ffnf

n
fg aagfaaVUVaVUaV  

because { }+∞∞−′ng  is contained in { }+∞∞−nf . 
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 Using (25) and the fact that { }+∞∞−′ng  is contained in { }+∞∞−nf  it follows that (17) are 

verified, therefore { }+∞∞−′ng  is contained in { }+∞∞−ng , i.e. { }+∞∞−ng  is the maximal white noise 

contained in { }+∞∞−nf . 

 To see that { }+∞∞−nv  is a deterministic process is sufficient to consider a white 

noise process { }+∞∞−nl  contained in { }+∞∞−nv . Then it is easy to verify that { }+∞∞−nl  is 

contained in { }+∞∞−nf  and by the maximality of { }+∞∞−ng  in { }+∞∞−nf  it follows that { }+∞∞−nl  is 

contained in { }+∞∞−ng . We have than 
0)(],[ ** =−==Γ lFflFfnn VPIPVVPVlg  

and 
0],[Re],[Re],[ ≤−Γ−Γ=Γ nnnnnnn llglgll , 

which implies that 0=nl . 
 If we consider 
(26)     nnn vuf ′+′=  

another decomposition of the form (18) and (19), where { }+∞∞−′nu  is a moving average of 

the white noise { }+∞∞−′ng  contained in { }+∞∞−nf , then by the maximality of { }+∞∞−ng  it follows 

that { }+∞∞−′ng  is contained in { }+∞∞−ng  and it is easy follows that 
(27)     FVg ⊂Ε′ . 

We shall see that in fact we have FVg =Ε′ . 
 From (26) we have 
(28)     vuf VVV ′′ +=   
and 
(29)     vuf ′

∞
′
∞∞ Κ⊕Κ=Κ . 

 Let us denote by ΕΘ= ′gVFF1  and fF
n
fn VPUq

1
= . It is easy to see that { }+∞∞−nq  is 

a white noise process contained in { }+∞∞−nf  and using the fact that u
qV +Κ⊥Ε  and (29) we 

can verify that the relation (17) concerning { }+∞∞−′nv . Therefore { }+∞∞−nq  is a white noise 

contained in the deterministic process { }+∞∞−′nv , i.e. 0=nq . Hence { }01 =F  and 

consequently FVg =Ε′ . We obtain therefore that )(FMgu =Κ=Κ ′
∞

′
∞ , ℜ=Κ ′

∞
v  and by 

(28), (29) it follows that fu PVV =′ . So we have uu =′  and vv =′ . 
 The proof of the theorem is finished. 
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